Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (11): 2067-2075    DOI: 10.3785/j.issn.1008-973X.2020.11.001
    
Numerical simulation of entrainment effect of debris flow considering entraining substrate material
Dao-sheng LING1,2(),Qi-xi JIANG1,Yu ZHAO1,2,*()
1. Institute of Geotechnical Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Center for Hypergravity Experimental and Interdisciplinary Research, Zhejiang University, Hangzhou 310058, China
Download: HTML     PDF(1222KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A concentration suspension model was introduced to describe the dynamic characteristics of soil in mixed zone based on the theory of debris flow entrainment effect, and then the Herschel-Bulkley-Papanastasiou (HBP) model considering the entrainment of substrate material was utilized to describe the high-speed dynamic process of the mixture of debris flow and substrate material. The smoothed particle hydrodynamics (SPH) method was used to solve the boundary value problems. A typical small scale model experiment was selected to verify the effectiveness of this method. The final accumulation shape and the influenced range of debris flow obtained by the proposed method were consistent with the experiment results. On this basis, a sensitivity analysis of parameters was carried out. Results show that as the increase of the thickness of substrate material in a certain range, the erosion depth will increase and converge to a certain limit value. The increase of internal friction angle, cohesion and dynamic viscosity of substrate material will reduce the entrainment of substrate material and the uplift range of substrate. However, the increase of internal friction angle and dynamic viscosity has little effect on the uplift range of substrate. The increase of cohesion can significantly inhibit the above two phenomena within the reasonable range of soil physical parameters.



Key wordssubstrate entrainment      concentration suspension model      entrainment effect      Herschel-Bulkley-Papanastasiou (HBP) model      smoothed particle hydrodynamics (SPH)     
Received: 24 December 2019      Published: 15 December 2020
CLC:  TV 144  
Corresponding Authors: Yu ZHAO     E-mail: dsling@zju.edu.cn;zhao_yu@zju.edu.cn
Cite this article:

Dao-sheng LING,Qi-xi JIANG,Yu ZHAO. Numerical simulation of entrainment effect of debris flow considering entraining substrate material. Journal of ZheJiang University (Engineering Science), 2020, 54(11): 2067-2075.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.11.001     OR     http://www.zjujournals.com/eng/Y2020/V54/I11/2067


考虑基层裹挟的碎屑流铲刮效应数值模拟

基于碎屑流铲刮基层的作用机理,引入浓度悬浮模型用于描述混合区土体动力特性,采用考虑基层裹挟的Herschel-Bulkley-Papanastasiou(HBP)模型描述高速运移的碎屑流与基层材料裹挟掺混的动力过程,并采用光滑粒子流体动力学(SPH)方法求解. 选择典型小比尺室内模型试验验证该方法的有效性,计算所得滑体最终堆积形态和碎屑流影响范围与试验结果一致. 在此基础上开展基层材料物理力学参数的敏感性分析,结果表明,在一定范围内基层厚度增加将导致侵蚀深度增大并收敛于某极限值. 基层材料的内摩擦角、黏聚力和动力黏度的增加均会减少碎屑流对基层的铲刮效应和基层隆起范围,但内摩擦角和动力黏度的增加对基层隆起范围影响较小. 在合理土体物理参数范围内,仅黏聚力的增加即能显著抑制以上2种现象.


关键词: 基层裹挟,  浓度悬浮模型,  铲刮效应,  HBP模型,  光滑粒子流体动力学(SPH) 
Fig.1 Schematic diagram of different areas of concentration suspension model
Fig.2 Schematic diagram of substrate entrainment effect experiment
材料 $\rho $ /(kg?m?3 $c$ /kPa $\varphi $/(°) $\mu $ /(Pa·s)
煤渣 1600 0 37 60
PVC颗粒 970 0 27 30
Tab.1 Mechanical parameters of coal slag and PVC particles
Fig.3 Cloud chart of simulated speed distribution under condition B of substrate entrainment experiment
工况 工况组号 ${L_{{\rm{dep}}}}$/cm $\eta $/% ${L^{\rm{*}}}$/cm
试验 计算
3.0 cm厚PVC胶结基层 A 51.4 49.0 4.67 49.0
3.0 cm厚PVC颗粒基层 B 48.1 47.0 2.29 50.0
1.5 cm厚PVC颗粒基层 C 50.5 47.4 6.14 49.1
Tab.2 Table of numerical simulation calculation parameters
Fig.4 Comparison diagram of calculation results and test results of accumulation shape of coal
Fig.5 Influence of substrate thickness on entrainment effect
Fig.6 Influence of internal friction angle of substrate on entrainment effect
Fig.7 Influence of cohesion of substrate on entrainment effect
Fig.8 Influence of kinetic viscosity of substrate on entrainment effect
[1]   CROSTA G B, CHEN H, LEE C F Replay of the 1987 Val Pola Landslide, Italian Alps[J]. Geomorphology, 2004, 60 (1/2): 127- 146
[2]   ZHOU J W, CUI P, HAO M H Comprehensive analyses of the initiation and entrainment processes of the 2000 Yigong catastrophic landslide in Tibet, China[J]. Landslides, 2016, 13 (1): 39- 54
doi: 10.1007/s10346-014-0553-2
[3]   DUFRESNE A. Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling [D]. Christchurch: University of Canterbury Geological Sciences, 2009.
[4]   IVERSON R M, REID M E, LOGAN M, et al Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment[J]. Nature Geoscience, 2011, 4 (2): 116- 121
doi: 10.1038/ngeo1040
[5]   陆鹏源, 侯天兴, 杨兴国, 等 滑坡冲击铲刮效应物理模型试验及机制探讨[J]. 岩石力学与工程学报, 2016, 35 (6): 1225- 1232
LU Peng-yuan, HOU Tian-xing, YANG Xing-guo, et al Physical modeling test for entrainment effect of landslides and the related mechanism discussion[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35 (6): 1225- 1232
[6]   李祥龙, 唐辉明, 熊承仁, 等 基底铲刮效应对岩石碎屑流停积过程的影响[J]. 岩土力学, 2012, 33 (5): 1527- 1541
LI Xiang-long, TANG Hui-ming, XIONG Cheng-ren, et al Influence of substrate ploughing and erosion effect on process of rock avalanche[J]. Rock and Soil Mechanics, 2012, 33 (5): 1527- 1541
doi: 10.3969/j.issn.1000-7598.2012.05.039
[7]   陆鹏源, 杨兴国, 邵帅, 等 滑坡-碎屑流冲切铲刮效应的颗粒离散元模拟[J]. 水利水电技术, 2018, 33 (5): 22- 30
LU Peng-yuan, YANG Xing-guo, SHAO Shuai, et al Particle discrete element simulation on punching-shear and scraping effect of landslide-debris flow[J]. Water Resources and Hydropower Engineering, 2018, 33 (5): 22- 30
[8]   OUYANG C, HE S, TANG C Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area[J]. Engineering Geology, 2015, 194: 62- 72
doi: 10.1016/j.enggeo.2014.07.012
[9]   高杨, 李滨, 王国章 鸡尾山高速远程滑坡运动特征及数值模拟分析[J]. 工程地质学报, 2016, 24 (3): 425- 434
GAO Yang, LI Bin, WANG Guo-zhang Motion feature and numerical simulation analysis of jiweishan landslide with rapid and long run-out[J]. Journal of Engineering Geology, 2016, 24 (3): 425- 434
[10]   蒋明镜 现代土力学研究的新视野: 宏微观土力学[J]. 岩土工程学报, 2019, 41 (2): 195- 254
JIANG Ming-jing New paradigm for modern soil mechanics: geomechanics from micro to macro[J]. Chinese Journal of Geotechnical Engineering, 2019, 41 (2): 195- 254
[11]   SCOTT M, OLDRICH H Dynamic modelling of entrainment in rapid landslides[J]. Canadian Geotechnical Journal, 2005, 42 (5): 1437- 1448
doi: 10.1139/t05-064
[12]   ULRICH C, LEONARDI M, RUNG T Multi-physics SPH simulation of complex marine-engineering hydrodynamic problems[J]. Ocean Engineering, 2013, 64: 109- 121
doi: 10.1016/j.oceaneng.2013.02.007
[13]   FOURTAKAS G, ROGERS B D Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using smoothed particle hydrodynamics (SPH) accelerated with a graphics processing unit (GPU)[J]. Advances in Water Resources, 2016, S0309170816300926
[14]   韩征, 粟滨, 李艳鸽, 等 基于HBP本构模型的泥石流动力过程SPH数值模拟[J]. 岩土力学, 2019, 40 (Suppl.1): 477- 485
HAN Zheng, SU Bin, LI Yan-ge, et al Smoothed particle hydrodynamic numerical simulation of debris flow processbased on Herschel-Bulkley-Papanastasiou constitutive model[J]. Rock and Soil Mechanics, 2019, 40 (Suppl.1): 477- 485
[15]   BAGNOLD R A Experiments on gravity-free dispersion of large solid spheres in a newtonian fluid under shear[J]. Proceedings of the Royal Society A, 1954, 225 (1160): 49- 63
[16]   JENKINS J T, SAVAGE S B A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. Journal of Fluid Mechanics, 1983, 130 (1): 187
[17]   PENG C, WU W, YU H S, et al A SPH approach for large deformation analysis with hypoplastic constitutive model[J]. Acta Geotechnica, 2015, 10 (6): 703- 717
doi: 10.1007/s11440-015-0399-3
[18]   ZHU C, HUANG Y, ZHAN L T SPH-based simulation of flow process of a landslide at Hongao landfill in China[J]. Natural Hazards, 2018,
[19]   LIU G R, LIU M B. 光滑粒子流体动力学: 一种无网格粒子法[M]. 韩旭, 杨刚, 强洪夫, 译. 长沙: 湖南大学出版社, 2005.
[20]   MONAGHAN J J, GINGOLD R A Shock simulation by the particle method SPH[J]. Journal of Computational Physics, 1983, 52 (2): 374- 389
doi: 10.1016/0021-9991(83)90036-0
[21]   MARRONE S, ANTUONO M, COLAGROSSI A, et al δ-SPH model for simulating violent impact flows[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200 (13?16): 1526- 1542
doi: 10.1016/j.cma.2010.12.016
[22]   CRESPO A J C, DOMINGUEZ J M, ROGERS B D, et al DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)[J]. Computer Physics Communications, 2015, (187): 204- 216
[23]   FARIN M, MANGENEY A, ROCHE O, et al. Landslide boost from entrainment of erodible material along the slope [C]// AGU Fall Meeting. San Francisco: [s.n.], 2011.
[1] ZHANG Wen jun, SUN Hong yue, PAN Pan, WEI Zhen lei.

Analysis on self dredging capability of siphon drainage pool in debris flow[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(11): 2159-2164.