Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (10): 1874-1882    DOI: 10.3785/j.issn.1008-973X.2020.10.002
    
Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking
Ya-qin ZHAO1(),Yu-ting NIE1,Long-wen WU1,*(),Yu-peng ZHANG2,Sheng-yang HE1
1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Beijing Research Institute, Huawei Technology Limited Company, Beijing 100095, China
Download: HTML     PDF(1519KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A variational nonlinear chirp mode decomposition algorithm based on ridge tracking was proposed aiming at the problem of multi-component signal separation caused by mixed signals from multiple emitters. The improved ridge path regrouping algorithm was used to extract the instantaneous frequency of each component from the time-frequency distribution, and the extracted instantaneous frequency of each component was used as the preset frequency of the variational nonlinear chirp mode decomposition. A repeated instantaneous frequency extraction was performed signal to update the preset frequency for iteration based on the reconstructed multi-component. The above processes were repeated until the frequency difference between two iterations was less than the preset threshold, while the corresponding mode decomposition results were output. The experimental results show that the variational nonlinear chirp mode decomposition algorithm based on ridge tracking has better performance of multi-component signal separation than the classical variational nonlinear chirp mode decomposition.



Key wordsmulti-component signal      ridge path regrouping      instantaneous frequency estimation      variational nonlinear chirp mode decomposition     
Received: 27 September 2019      Published: 28 October 2020
CLC:  TN 971  
Corresponding Authors: Long-wen WU     E-mail: yaqinzhao@hit.edu.cn;wulongwen@hit.edu.cn
Cite this article:

Ya-qin ZHAO,Yu-ting NIE,Long-wen WU,Yu-peng ZHANG,Sheng-yang HE. Multi-component signal separation using variational nonlinear chirp mode decomposition based on ridge tracking. Journal of ZheJiang University (Engineering Science), 2020, 54(10): 1874-1882.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.10.002     OR     http://www.zjujournals.com/eng/Y2020/V54/I10/1874


基于脊路跟踪的变分非线性调频模态分解方法

针对多个辐射源信号混合构成的多分量信号分离问题,提出基于脊路跟踪的变分非线性调频模态分解算法. 该方法使用改进的脊路重组算法对时频分布图中各分量瞬时频率进行提取,将提取出的各分量瞬时频率作为变分非线性调频模态分解的预设频率;利用重构后的多分量信号进行瞬时频率提取,更新预设频率后继续模态分解;重复上述过程,直到迭代前、后频率差值小于预设阈值,输出对应的模态分解结果. 实验结果表明,基于脊路跟踪的变分非线性调频模态分解算法比经典变分非线性调频模态分解算法具有更好的多分量信号分离效果.


关键词: 多分量信号,  脊路重组,  瞬时频率估计,  变分非线性调频模态分解 
Fig.1 Basic flow of RT-VNCMD algorithm
Fig.2 RPRG performance comparison for IF estimation
Fig.3 Correlation error of instantaneous frequency obtained by RT-VNCMD/VNCMD decomposition
Fig.4 RMSE of instantaneous amplitude obtained by RT-VNCMD/VNCMD decomposition
Fig.5 Time-domain figure obtained by RT-VNCMD/VNCMD decomposition (SNR=15 dB)
Fig.6 Correlation error of instantaneous frequency obtained by RT-VNCMD/VNCMD decomposition
Fig.7 RMSE of instantaneous amplitude obtained by RT-VNCMD/VNCMD decomposition
Fig.8 Time-domain figure obtained by RT-VNCMD/VNCMD decomposition (SNR=15 dB)
Fig.9 Time domain waveform of mixed signal
Fig.10 Time-frequency information of mixed signals
Fig.11 Time-domain figure obtained by RT-VNCMD/VNCMD decomposition
分离方法 REf RMSE/dB
VNCMD 0.0124 0.6335
RT-VNCMD 0.0046 0.3500
Tab.1 Decomposition results of VNCMD/RTVNCMD
[1]   GILLES J Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61 (16): 3999- 4010
doi: 10.1109/TSP.2013.2265222
[2]   BHATTACHARYYA A, PACHORI R B A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform[J]. IEEE Transactions on Biomedical Engineering, 2017, 64 (9): 2003- 2015
doi: 10.1109/TBME.2017.2650259
[3]   HUANG N E, SHEN Z, LONG S R, et al The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 1998, 454 (1971): 903- 995
doi: 10.1098/rspa.1998.0193
[4]   DRAGOMIRETSKIY K, ZOSSO D Variational mode decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62 (3): 531- 544
doi: 10.1109/TSP.2013.2288675
[5]   CHEN S Q, DONG X J, PENG Z K, et al Nonlinear chirp mode decomposition: a variational method[J]. IEEE Transactions on Signal Processing, 2017, 65 (22): 6024- 6037
doi: 10.1109/TSP.2017.2731300
[6]   REDDY G R S, RAO R Analysis of multi-component non-stationary signals using Fourier-Bessel series and Wigner-Hough transform[J]. Journal of Electronic Science and Technology, 2017, 15 (1): 69- 76
[7]   施闻明, 朱海, 杨晓东. 基于自适应核函数的Wigner变换方法研究[C]//第13届中国系统仿真技术及其应用学术年会, 黄山: Scientific Research Publish, 2011: 126-129.
SHI Wen-ming, ZHU Hai, YANG Xiao-dong. Research on Wigner transform based on adaptive kernel function [C]// 13th System Simulation Technology and Application. Huangshan: Scientific Research Publish, 2011: 126-129.
[8]   KHAN N A, BOASHASH B Instantaneous frequency estimation of multicomponent nonstationary signals using multiview time-frequency distributions based on the adaptive fractional spectrogram[J]. IEEE Signal Processing Letters, 2013, 20 (2): 157- 160
doi: 10.1109/LSP.2012.2236088
[9]   STANKOVIC L, THAYAPARAN T, DAKOVIC M, et al Micro-Doppler removal in the radar imaging analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49 (2): 1234- 1250
doi: 10.1109/TAES.2013.6494410
[10]   CHEN S Q, DONG X J, XING G P, et al Separation of overlapped non-stationary signals by ridge path regrouping and intrinsic chirp component decomposition[J]. IEEE Sensors Journal, 2017, 17 (18): 5994- 6005
doi: 10.1109/JSEN.2017.2737467
[11]   BARKAT B, ABED-MERAIM K Algorithms for blind components separation and extraction from the time-frequency distribution of their mixture[J]. Eurasip Journal on Applied Signal Processing, 2004, 2004 (13): 2025- 2033
[12]   PICINBONO B On instantaneous amplitude and phase of signals[J]. IEEE Transactions on Signal Processing, 1997, 45 (3): 552- 560
doi: 10.1109/78.558469
[13]   MEIGNEN S, PHAM D H, MCLAUGHLIN S On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[J]. IEEE Transactions on Signal Processing, 2017, 65 (8): 2093- 2103
doi: 10.1109/TSP.2017.2656838
[14]   PAB M C, LIN Y F Further exploration of Vold-Kalman-filtering order tracking with shaft-speed information I: theoretical part, numerical implementation and parameter investigations[J]. Mechanical Systems and Signal Processing, 2006, 20 (5): 1134- 1154
doi: 10.1016/j.ymssp.2005.01.005
[15]   HOU T Y, SHI Z Q Sparse time-frequency decomposition based on dictionary adaptation[J]. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 2016, 374 (2065): 1- 16
[16]   STEPHEN B, NEAL P, ERIC C, et al. Distributed optimization and statistical learning via the alternating direction method of multipliers [M]// Foundations and Trends in Machine Learning. Boston: Now Publishers, 2011, 3(1): 1-122.
No related articles found!