Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (5): 1029-1038    DOI: 10.3785/j.issn.1008-973X.2020.05.022
Aerospace Technology     
Satellite power control method based on fuzzy logic control
Peng-cheng LIU(),Jiu-ling XU,Jia-jun HUANG,Chao-jie ZHANG*()
Micro-satellite Research Center, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(12592KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A power control method based on fuzzy logic control was proposed, aming at the problem that the access method of code division multiple access in the satellite communication system may cause problems such as near-far effect. The transmission power of each slave star was controlled in the inner loop power control, so that the received power of each slave star to the master star was balanced. The fuzzy logic controller improved the overall ranging accuracy by dynamically adjusting the target power to the best in the outer loop power control. The proposed power control method was compared with the traditional fixed step power control method in the simulation of Matlab. Simulation results show that both methods can make the power from each slave star to the master star equal, and track the minimum slave power. However, the power control method based on fuzzy logic control has faster response. An experiment platform for communication between a master star and three slave stars was established on the monitoring and control transponder. Experimental results showed that after power control, the overall ranging accuracy of satellite formation was increased from 60 cm to 20 cm, and the power from each slave star to the master star was balanced.



Key wordssatellite formation      satellite communication system      power control      fuzzy logic control      ranging accuracy     
Received: 23 April 2019      Published: 05 May 2020
CLC:  V 11  
Corresponding Authors: Chao-jie ZHANG     E-mail: 21824029@zju.edu.cn;zhangcj@zju.edu.cn
Cite this article:

Peng-cheng LIU,Jiu-ling XU,Jia-jun HUANG,Chao-jie ZHANG. Satellite power control method based on fuzzy logic control. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 1029-1038.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.05.022     OR     http://www.zjujournals.com/eng/Y2020/V54/I5/1029


基于模糊逻辑控制的卫星功率控制方法

卫星通信系统中码分多址的接入方式会引起远近效应问题,针对此问题提出基于模糊逻辑控制的功率控制方法.在内环功率控制中控制各从星的发射功率,使各从星到达主星的接收功率平衡;在外环功率控制中,模糊逻辑控制器通过动态调节目标功率为最佳的方式,提高总体测距精度. 在Matlab仿真中将该功率控制方法与传统的固定步长功率控制方法进行对比,仿真结果表明,2种方法均能使各从星到达主星的功率趋于相等,并追踪最小的从星功率,但是基于模糊逻辑控制的功率控制方法的响应速度更快. 在测控应答机上,搭建1颗主星与3颗从星之间通信的实验平台. 实验结果表明,使用功率控制后,卫星编队的总体测距精度从60 cm提高到20 cm,各从星到达主星的功率平衡.


关键词: 卫星编队,  卫星通信系统,  功率控制,  模糊逻辑控制,  测距精度 
Fig.1 Relationship between slaves A, B and master
Fig.2 Model diagram of closed loop power control
Fig.3 Model diagram of traditional fixed step power control method
Fig.4 Member function of input variables and output variables
Mfour ΔPtar
RNmin=NE(负) RNmin=NZ(负零) RNmin=PZ(正零) RNmin=PO(正)
S(小) NS(负较小) ZE(近似零) ZE(近似零) PS(正较小)
M(中) NS(负较小) ZE(近似零) ZE(近似零) PS(正较小)
L(大) NL(负较大) NS(负较小) PS(正较小) PL(正较大)
Tab.1 Fuzzy logic control rule
Fig.5 Fuzzy control surface of input variables and output variables
卫星 T/s E I/(o) AN/(o) N/(o) t/s
A 24 000 0.100 45 0.201 5 18.000 0 0 22.56
B 24 000 0.100 20 0.202 0 18.061 5 0 17.35
C 24 000 0.100 00 0.200 0 18.000 0 0 22.60
D 24 000 0.100 00 0.200 0 18.000 0 0 21.00
Tab.2 Satellite orbit parameter table
Fig.6 Power curves of three slave stars without power control
Fig.7 Power control simulation curve of power control method based on fuzzy logic control
Fig.8 Traditional fixed step power control simulation
Fig.9 Power control deviation curves of traditional fixed step power control method and method based on fuzzy logic control
Fig.10 Power control experimental verification platform based on fuzzy logic control
Fig.11 Ranging accuracy without power control
Fig.12 Ranging accuracy graph of power control method based on fuzzy logic control
Fig.13 Received power variation map for three channels
[1]   王有亮. 卫星编队飞行相对轨迹优化与控制[D]. 合肥: 中国科学院大学, 2018.
WANG You-liang. Relative trajectory optimization and control for satellite formation flying [D]. Hefei: University of Chinese Academy of Sciences, 2018.
[2]   吕文渊 feiCDMA系统中的一种自适应功率控制算法[J]. 太原学院学报: 自然科学版, 2016, 34 (2): 11- 13
LV Wen-yuan An adaptive power control algorithm in CDMA systems[J]. Journal of Taiyuan Univisity: Natural Science Edition, 2016, 34 (2): 11- 13
[3]   李晓菲. 无线通信网络自适应功率控制的算法研究[D]. 北京: 北方工业大学, 2013.
LI Xiao-fei. Research on adaptive power control in wireless communication network [D]. Beijing: North China University of Technology, 2013.
[4]   ARIVAVISITAKUL S. SIR-based power control in a CDMA system [C]// IEEE Global Telecommunications Conference. Orlando: IEEE, 1992: 868-873.
[5]   张海波, 李方伟, 刘开健 CDMA系统中的闭环功率控制方法[J]. 硅谷, 2008, (22): 130- 130
ZHANG Hai-bo, LI Fang-wei, LIU Kai-jian Closed loop power control method in CDMA systems[J]. Silicon Valley, 2008, (22): 130- 130
[6]   何柳青, 曹清华 CDMA系统中基于SIR的自适应变步长闭环功率控制[J]. 甘肃科学学报, 2006, 18 (2): 73- 76
HE Liu-qing, CAO Qing-hua An adaptive step-size closed-loop power control based on SIR-measurement in CDMA systems[J]. Journal of Gansu Sciences, 2006, 18 (2): 73- 76
doi: 10.3969/j.issn.1004-0366.2006.02.021
[7]   赵琳, 刘剑飞, 于晓然, 等 CDMA系统中改进的功率控制算法[J]. 北京邮电大学学报, 2007, 30 (3): 96- 99
ZHAO Lin, LIU Jian-fei, YU Xiao-ran, et al An adaptive power control algorithm in CDMA systems[J]. Journal of Beijing University of Posts and Telecommunications, 2007, 30 (3): 96- 99
doi: 10.3969/j.issn.1007-5321.2007.03.023
[8]   CAMPOS-DELGADO D U, LUNA-RIVERA M. Distributed power control in quasi-synchronous multi-carrier CDMA systems [C]// American Control Conference. Montreal: IEEE, 2012: 466-471.
[9]   DONMEZ N. A game-theoretic approach to efficient power control in CDMA data networks [C]// International Symposium on Innovations in Intelligent Systems and Applications. Istanbul: IEEE. 2011: 248-252.
[10]   MAITY S P, HATI S An adaptive SIC technique in DS-CDMA using neural network[J]. Procedia Engineering, 2012, 30: 1056- 1063
doi: 10.1016/j.proeng.2012.01.963
[11]   XU H, ZHOU X, CHEN Y Automatic uplink resource management in mobile cellular networks: a utility-based cooperative power control strategy[J]. International Journal of Wireless Information Networks, 2013, 20 (4): 365- 374
doi: 10.1007/s10776-013-0212-x
[12]   CHANG P R, WANG B C Adaptive fuzzy power control for CDMA mobile radio systems[J]. IEEE Transactions on Vehicular Technology, 1996, 45 (2): 225- 236
doi: 10.1109/25.492846
[13]   SINGH K, DHILLON K S, SINGH K. Fuzzy logic based closed loop adaptive power control for minimization of near-far interference in CDMA systems [C]// International Conference on Recent Advances in Engineering and Computational Sciences. Chandigarh: IEEE, 2015.
[14]   李永波 一种提高应答机伪码非相干测距精度的方法[J]. 电讯技术, 2009, 49 (3): 66- 69
LI Yong-bo One method for improving pseudocode noncoherent ranging precision in transponder[J]. Telecommunication Engineering, 2009, 49 (3): 66- 69
doi: 10.3969/j.issn.1001-893X.2009.03.014
[15]   BETZ J W, KOLODZIEJSKI K R Generalized theory of code tracking with an early-late discriminator Part II: noncoherent processing and numerical results[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 (4): 1557- 1564
[16]   李国勇, 杨丽娟. 神经模糊预测控制及其matlab实现: 第4版[M]. 北京: 电子工业出版社, 2018.
[17]   张志文, 张硕, 李天宇 基于模糊逻辑并联混合动力汽车控制策略研究[J]. 中北大学学报: 自然科学版, 2018, 39 (6): 677- 686
ZHANG Zhi-wen, ZHANG Shuo, LI Tian-yu Research on control strategy of parallel hybrid electric vehicle based on fuzzy logic[J]. Journal of North-University of China: Natural Science Edition, 2018, 39 (6): 677- 686
[18]   申其豪, 廖华, 马逊, 等 基于自适应模糊逻辑PID控制最大功率点跟踪的仿真研究[J]. 云南师范大学学报: 自然科学版, 2018, 38 (5): 7- 13
SHEN Qi-hao, LIAO Hua, MA Xun, et al Simulation research on maximum power point tracking based on adaptive fuzzy logic PID control[J]. Journal of Yunnan Normal university: Natural Science Edition, 2018, 38 (5): 7- 13
[1] Ling-xiao ZENG,Hong-wei LIU,Wei LI,Yong-gang LIN,Ya-jing GU. Cooperative control of power and load based on pitch system[J]. Journal of ZheJiang University (Engineering Science), 2021, 55(4): 750-756.
[2] MA Zi ang, XIANG Zhi yu. Calibration and 3D reconstruction with omnidirectional ranging by optic flow camera[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(9): 1651-1657.
[3] CHEN You-Rong, SHU Li, DONG Ji-Fen, HONG Zhen. Power control in wireless sensor network based on
nearestneighbor algorithm
[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(7): 1321-1326.
[4] CHEN Xun, ZHANG Chao-Yang, LUO Hai-Yan. Joint optimization of power control, channel assignment and scheduling in wireless mesh network[J]. Journal of ZheJiang University (Engineering Science), 2009, 43(8): 1406-1411.