Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (4): 748-758    DOI: 10.3785/j.issn.1008-973X.2020.04.014
Civil Engineering, Traffic Engineering     
Shear test methods of bonded anchor bolts in concrete
Xue-you QUAN1,2(),Qian HENG1,2,Xiong-song LI1,Lian-jie LIU1,2
1. College of Civil Engineering, Chongqing University, Chongqing 400045, China
2. Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing 400045, China
Download: HTML     PDF(1922KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Two sets of dual anchors shear test methods (DSTMs) were proposed by considering the shortcomings of single anchor shear test method (SSTM). An auxiliary anchor was provided at the rear end of loading plate. Test results of 90 anchor bolts in six diameters show that the shear capacity obtained from SSTM is lower than that from DSTM, but all of them being larger than the theoretical values expressed in 0.6 times the shaft tensile fracture strength. As a result of tilting of loading plate toward the pull force, measured shear-displacement curves from SSTM had higher stochastic characteristics than those from DSTMs. Positive connection would be reached in the tilting-restraining system by exerting about 2.0 kN pre-tension force in auxiliary anchor, and effective control of loading plate tilting would be reached by virtue of the tensile rigidity of auxiliary anchor, greatly reducing in the scattering of shear-displacement curves from DSTM. Determined consistency exists between test results from both of the two sets of DSTMs system, indicating that the tension history of auxiliary anchor would not adversely affect its shear properties.



Key wordssingle anchor shear test method (SSTM)      dual anchors shear test method (DSTM)      auxiliary anchor      scattering      shear-displacement curve     
Received: 22 May 2019      Published: 05 April 2020
CLC:  TU 398  
Cite this article:

Xue-you QUAN,Qian HENG,Xiong-song LI,Lian-jie LIU. Shear test methods of bonded anchor bolts in concrete. Journal of ZheJiang University (Engineering Science), 2020, 54(4): 748-758.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.04.014     OR     http://www.zjujournals.com/eng/Y2020/V54/I4/748


混凝土中黏结型锚栓剪切试验方法

针对单独锚栓剪切试验方法(SSTM)存在的缺陷,提出2套在加载板尾部配置辅助锚栓的双锚栓剪切试验方法(DSTM). 总计6个直径规格、90个锚栓的比对剪切试验表明,单独锚栓剪切试验获得的承载力低于双锚栓剪切试验获得的承载力,但均能达到以0.6倍锚栓杆体抗拉强度表示的理论剪切承载力的水平;单独锚栓试验加载板的转动导致剪力-位移实测曲线存在明显的离散性;在双锚栓试验中,对辅助锚栓施加约2.0 kN的预紧力,就能在加载板转动约束体系中建立有效的连接,借助辅助锚栓的拉伸刚度有效限制加载板的转动,显著降低剪力-位移试验曲线的离散性. 2套双锚栓剪切试验方法获得的试验结果具有一致性,作为辅助锚栓使用时承担拉力的历史不会影响其剪切性能.


关键词: 单锚栓剪切试验(SSTM),  双锚栓剪切试验(DSTM),  辅助锚栓,  离散性,  剪力-位移曲线 
Fig.1 Single anchor shear test method
Fig.2 Dual anchors shear test method
Fig.3 Half-threaded shear anchor bolt
序号 锚栓规格 屈服强度/MPa 抗拉强度/MPa
1 M12 638.4 880.5
2 M14 578.2 1 038.2
3 M16 536.8 839.3
4 M18 598.8 976.3
5 M20 502.8 773.6
6 M22 467.4 752.7
Tab.1 Mechanical properties of anchor bolts
Fig.4 Specimen design drawing for anchor shear test
试件编号 锚栓试验组
注:1)括号内标注的是该双锚栓试验组对应的辅助锚栓组,且该辅助锚栓是作为试验组进行设计的.
Block-1 SIN-12 SIN-14 DUA-12
(DUA-14)1)
DUA-14 DUB-12 DUB-14
Block-2 SIN-16 SIN-18 DUA-16
(DUA-18)
DUA-18 DUB-16 DUB-18
Block-3 SIN-20 SIN-22 DUA-20
(DUA-22)
DUA-22 DUB-20 DUB-22
Tab.2 Distribution of anchor test groups in concrete specimens
Fig.5 Layout of anchors in Block-1
Fig.6 Loading plate for single anchor test groups
Fig.7 Loading plate for dual anchor test groups
Fig.8 Schematic diagram of dual anchors shear test setup
Fig.9 Shear failure of SIN-12
Fig.10 Impact by cross beam in loading plate of auxiliary anchor DUB-14-4 for DUB-14-3
Fig.11 Impact by cross beam in loading plate of auxiliary anchor bolt for DUA-14
锚栓组 锚栓编号
DUB-12 全部锚栓
DUA-14 全部锚栓
DUB-14 DUB-14-4
Tab.3 Auxiliary anchors impacted by test anchor fracture
Fig.12 Shear-displacement curves of M12 test groups
Fig.13 Shear-displacement curves of M14 test groups
Fig.14 Shear-displacement curves of M16 test groups
Fig.15 Shear-displacement curves of M18 test groups
Fig.16 Shear-displacement curves of M20 test groups
Fig.17 Shear-displacement curves of M22 test groups
Vmax
M12 M14 M16 M18
5.31 7.81 8.47 11.29
Tab.4 Measured maximum tension of auxiliary anchor kN
Fig.18 Tension force of auxiliary anchor bolt
锚栓规格 Vu,s / kN V1 / kN V2,A / kN V2,B / kN V1/V2
M12 59.75 62.77 67.85 68.12 0.92
M14 95.89 98.41 106.12 106.41 0.92
M16 101.25 117.69 123.94 123.14 0.95
M18 149.06 156.14 169.49 164.92 0.93
M20 145.82 142.07 165.33 161.39 0.87
M22 171.67 155.80 202.80 201.31 0.77
Tab.5 Measured average shear capacity of test groups
锚栓规格 SIN DUA DUB
r σ r σ r σ
M12 0.913 3.753 0.942 2.817 0.910 3.913
M14 0.840 6.149 0.975 2.459 0.964 2.877
M16 0.894 6.156 0.977 2.736 0.959 3.798
M18 0.857 10.065 0.962 4.692 0.978 3.900
M20 0.909 7.903 0.979 3.975 0.980 4.147
M22 0.924 9.227 0.961 6.470 0.936 8.548
Tab.6 Statistical characteristics of measured shear-displacement data of test groups before shear yielding
Fig.19 Plastic deformation at edge of installation hole of anchor bolt in loading plate
Fig.20 Stochastic mechanism of shear-displacement curves of single anchor test group
锚栓
规格
KSIN/
(kN·mm-1
KDUA/
(kN·mm-1
KDUB/
(kN·mm-1
KDUB/
KDUA
KDUB/
KSIN
M12 9.788 12.682 21.098 1.66 2.16
M14 12.899 22.669 46.480 2.05 3.60
M16 16.764 38.785 38.387 0.99 2.28
M18 14.786 37.486 40.155 1.07 2.72
M20 13.288 44.774 41.911 0.94 3.15
M22 17.923 74.078 72.990 0.99 4.07
Tab.7 Yield shear stiffness of test groups
Fig.21 Comparison of shear yield rigidity among test groups
[1]   ROBERTS T M, HAJI-KAZEMI H Strengthening of under-reinforced concrete beams with mechanically attached steel plates[J]. International Journal of Cement Composites and Lightweight Concrete, 1989, 11 (1): 21- 27
doi: 10.1016/0262-5075(89)90032-8
[2]   AHMEDT M, OEHLERS D J, BRADFORD M A Retrofitting reinforced concrete beams by bolting steel plates to their sides. Part 1. behaviour and experiments[J]. Structural Engineering and Mechanics, 2000, 10 (3): 211- 226
doi: 10.12989/sem.2000.10.3.211
[3]   OEHLERS D J, AHMED M, NGUYENT N T, et al Retrofitting reinforced concrete beams by bolting steel plates to their sides. Part 2. transverse interaction and rigid plastic design[J]. Sturctural Engineering and Mechanics, 2000, 10 (3): 227- 243
doi: 10.12989/sem.2000.10.3.227
[4]   李英民, 韩大刚, 林文修 锚栓钢板加固法抗弯性能试验及设计方法[J]. 工程抗震与加固改造, 2006, 28 (5): 68- 71
LI Ying-ming, HAN Da-gang, LIN Wen-xiu Experiment study of flexural strengthening reinforced concrete beams by bolting steel plates and design method[J]. Earthquake Resistant Engineering and Retrofitting, 2006, 28 (5): 68- 71
doi: 10.3969/j.issn.1002-8412.2006.05.015
[5]   SU R K L, SIU W H, SMITH S T Effects of bolt-plate arrangements on steel plate strengthened reinforced concrete beams[J]. Engineering Structures, 2010, 32 (6): 1769- 1778
doi: 10.1016/j.engstruct.2010.02.028
[6]   LI L Z, LO S H, SU R K L Experimental study of moderately reinforced concrete beams strengthened with bolted-side steel plates[J]. Advances in Structural Engineering, 2013, 16 (3): 499- 516
doi: 10.1260/1369-4332.16.3.499
[7]   BARNES R A, BAGLIN P S, MAYS G C, et al External steel plate systems for the shear strengthening of reinforced concrete beams[J]. Engineering Structures, 2001, 23 (9): 1162- 1176
doi: 10.1016/S0141-0296(00)00124-3
[8]   LI L Z, CAI Z W, LU Z D, et al Shear performance of bolted side-plated reinforced concrete beams[J]. Engineering Structures, 2017, 144: 73- 87
doi: 10.1016/j.engstruct.2017.04.043
[9]   OEHLERS D J Development of design rules for retrofitting by adhesive bonding or bolting either FRP or steel plates to RC beams or slabs in bridges and buildings[J]. Composites Part A:Applied Science and Manufacturing, 2001, 32 (9): 1345- 1355
doi: 10.1016/S1359-835X(01)00089-6
[10]   全学友, 邓扬, 刘辉, 等 直接剪切型锚栓钢板加固混凝土梁的抗弯承载力试验研究[J]. 建筑结构, 2018, 48 (18): 88- 92
QUAN Xue-you, DENG Yang, LIU Hui, et al Experimental study on flexural capacity of concrete beams strengthened by direct-shear-bolted steel plate[J]. Building Structure, 2018, 48 (18): 88- 92
[11]   CHENG B, SU R K L Numerical studies of deep concrete coupling beams retrofitted with a laterally restrained steel plate[J]. Advances in Structural Engineering, 2011, 14 (5): 903- 915
doi: 10.1260/1369-4332.14.5.903
[12]   CHENG B, SU R K L, SHI C, et al Laterally restrained steel plate with stiffeners for seismic retrofitting of concrete coupling beams[J]. Advanced Steel Construction, 2016, 12 (2): 194- 210
[13]   SU R K L, ZHU Y Experimental and numerical studies of external steel plate strengthened reinforced concrete coupling beams[J]. Engineering Structures, 2005, 27 (10): 1537- 1550
doi: 10.1016/j.engstruct.2005.04.012
[14]   ZHU Y, SU R K L Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: evaluation of theoretical strength[J]. Structural Engineering and Mechanics, 2010, 34 (5): 563- 580
doi: 10.12989/sem.2010.34.5.563
[15]   ZHU Y, SU R K L, ZHOU F L Seismic behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 1: experimental study[J]. Structural Engineering and Mechanics, 2007, 27 (2): 149- 172
doi: 10.12989/sem.2007.27.2.149
[16]   AL-SALLOUM Y A, ALRUBAIDI M A, ELSANADEDY H M, et al Strengthening of precast RC beam-column connections for progressive collapse mitigation using bolted steel plates[J]. Engineering Structures, 2018, 161: 146- 160
doi: 10.1016/j.engstruct.2018.02.009
[17]   Guideline for European technical approval of metal anchors for use in concrete: ETAG 001 [Z], 1997.
[18]   Standard test methods for strength of anchors in concrete elements: ASTM E488/E488M-15 [S]. [S.l.]: ASTM, 2015.
[19]   ELIGEHAUSEN R, MALLEE R, SILVA F. Anchorage in concrete construction [M]. [S.1.]: Ernst&Sohn, 2006.
[1] ZHOU Hua min, CHEN Sheng chang, REN Hao ran, WANG Han chuang, ZHANG Yao, LU Fang zheng. Reflected wave simulation based on reverse process of migration[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(8): 1627-1636.
[2] XU Xue-mei, ZHANG Jian-yang, NI Lan, LIU Li-juan, DENG Lian-wen, DU Zuo-juan. Radiation problem of non-uniform transmission line in high-speed
electronic integrated circuits system
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(7): 1238-1245.
[3] HOU Jian, XIA Tang-dai, SUN Miao-miao, KONG Xiang-bing. Multiple scattering of plane SH wave by arbitrary configuration of
rigid pile as barrier for vibration isolation
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(7): 1269-1274.
[4] WANG Peng, DING Guang-ya, CAI Yuan-qiang, WANG Jun. Analysis model for dynamic vibration of
embedded foundation excited by plane waves
[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(12): 2224-2230.