Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2020, Vol. 54 Issue (1): 169-177    DOI: 10.3785/j.issn.1008-973X.2020.01.020
Electrical Engineering     
Backflow power suppression of synchronous Boost converter based on recursive least squares and kernel density estimation method
Jing-cheng LI(),Yue WU,Si-deng HU*(),Jian-jiang SHI
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1762KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The problem of backflow power of synchronous rectifier Boost converter under no load and light load was analyzed in order to improve the efficiency of no-load and light-load synchronous rectifier Boost converter. A backflow power suppression strategy which can accurately identify the power backflow state and turn off the synchronous MOSFET rectification transistor was proposed according to the waveforms and working characteristics of the circuit. Recursive least squares (RLS) and kernel density estimation (KDE) were introduced to reduce the influence of inductance error and sampling error on the accuracy of the strategy in order to ensure the accuracy and efficiency of the strategy. The simulation and experiment platform of 1 kV·A aeronautical static converter was constructed. The simulation and experimental results show that this control strategy has high accuracy for power backflow recognition. The backflow power was significantly suppressed, and the no-load and the light-load efficiency of the circuit were improved.



Key wordsBoost converter      synchronous rectification      recursive least squares method (RLS)      kernel density estimation (KDE)      backflow power suppression     
Received: 03 December 2018      Published: 05 January 2020
CLC:  TM 46  
Corresponding Authors: Si-deng HU     E-mail: jingchengli@zju.edu.cn;husideng@zju.edu.cn
Cite this article:

Jing-cheng LI,Yue WU,Si-deng HU,Jian-jiang SHI. Backflow power suppression of synchronous Boost converter based on recursive least squares and kernel density estimation method. Journal of ZheJiang University (Engineering Science), 2020, 54(1): 169-177.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2020.01.020     OR     http://www.zjujournals.com/eng/Y2020/V54/I1/169


基于递推最小二乘法与核密度估计的同步整流Boost变换器回流功率抑制

为了提高同步整流Boost变换器空载、轻载的工作效率,针对同步整流Boost变换器空载、轻载时存在的功率回流问题,分析该状态下电路的工作波形与工作特性. 根据电路工作特性,提出能够准确识别功率回流状态并关断同步整流开关管的功率回流抑制策略. 为了保证策略的精度与效率的优化,引入递推最小二乘法(RLS)和核密度估计(KDE),减少了电感误差和采样误差对策略精度的影响. 搭建1 kV·A航空静止变流器仿真和实验平台进行验证. 仿真和实验结果表明,该控制策略对功率回流的识别精度高,能够显著抑制回流功率,提高了电路空载和轻载效率.


关键词: Boost变换器,  同步整流,  递推最小二乘法(RLS),  核密度估计(KDE),  回流功率抑制 
Fig.1 Topology of synchronous Boost converter
Fig.2 Waveforms of synchronous Boost converter with power backflow
参数 参数值
输入电压 Vin/V 28
输出电压 Vo/V 40
开关频率 fs/kHz 100
升压电感 L/μH 16
滤波电容 C/μF 1 000
Tab.1 Parameters of studied Boost converter
Fig.3 Kernel density estimation curves of D2Vin=20 V
Fig.6 Kernel density estimation curves of D2Vin=32 V
Fig.4 Kernel density estimation curves of D2Vin=24 V
Fig.5 Kernel density estimation curves of D2Vin=28 V
Fig.7 Waveforms with power backflow,Ro=200 Ω
Fig.8 Waveforms using backflow power suppression strategy,Ro=200 Ω
Fig.9 Experimental platform of aeronautical static converter
Fig.10 Flow chart of experimental method based on recursive least squares and kernel density estimation
Fig.11 Time-domain waveform of single time inductance identification,Vin=28 V,Ro=20 Ω
Fig.12 Distribution of inductor identification errors
Fig.13 Waveforms with power backflow
Fig.14 Waveforms using backflow power suppression strategy
Fig.15 Waveforms of critical CCM mode,Ro=21 Ω
Fig.16 Waveforms from CCM mode to DCM mode using backflow power suppression strategy
Fig.17 Load current-efficiency curves of Boost converter
[1]   张方华, 龚春英, 邓翔 航空静止变流器的研究综述[J]. 南京航空航天大学学报, 2014, 46 (01): 19- 26
ZHANG Fang-hua, GONG Chun-ying, DENG Xiang Review of aeronautic static inverter[J]. Journal of Nanjing University Journal of Aeronautics and Astronautics, 2014, 46 (01): 19- 26
doi: 10.3969/j.issn.1005-2615.2014.01.003
[2]   张力, 阮新波, 任小永 两级式逆变器中前级直流变换器的控制方法[J]. 中国电机工程学报, 2015, 35 (03): 660- 670
ZHANG Li, RUAN Xin-bo, REN Xiao-yong Control schemes for the front-end DC-DC converter in the two-stage inverter[J]. Proceedings of the CSEE, 2015, 35 (03): 660- 670
[3]   任敏, 谢驰, 李佳驹, 等 同步整流功率MOSFET特性及研究现状[J]. 微电子学, 2018, 48 (03): 390- 394
REN Min, XIE Chi, LI Jia-ju, et al The characteristics and research status of synchronous rectification power MOSFET[J]. Microelectronics, 2018, 48 (03): 390- 394
[4]   洪良, 杜建华, 王均, 等 非对称半桥LLC谐振变换器同步整流数字设计[J]. 电源学报, 2018, 16 (04): 113- 119
HONG Liang, DU Jian-hua, WANG Jun, et al Digital design for synchronous rectification used in LLC resonant converter with asymmetrical half-bridges[J]. Journal of Power Supply, 2018, 16 (04): 113- 119
[5]   赵睿, 张波 同步整流关键技术及其主要拓扑分析[J]. 电路与系统学报, 2004, (03): 100- 104
ZHAO Rui, ZHANG Bo Key techniques and topology analysis of synchronous rectification[J]. Journal of Circuits and Systems, 2004, (03): 100- 104
[6]   赵婉婉, 冯全源 升压型同步整流功率MOSFET的分析及电路仿真[J]. 半导体技术, 2007, (11): 975- 979
ZHAO Wan-wan, FENG Quan-yuan Analysis and circuit simulation of Boost synchronous rectifier power MOSFET[J]. Design and Development of IC, 2007, (11): 975- 979
doi: 10.3969/j.issn.1003-353X.2007.11.015
[7]   徐杨 提高同步整流Buck变换器轻载效率的数字化控制方案分析[J]. 电气技术, 2017, (02): 14- 19
XU Yang The Analysis of digital control approach to improve light-load efficiency for Buck converters with synchronous rectification[J]. Electrical Engineering, 2017, (02): 14- 19
doi: 10.3969/j.issn.1673-3800.2017.02.004
[8]   KIM M, SHIN M, CHOI S, et al. Reverse current control method of synchronous boost converter for fuel cell using a mode boundary detector [C] // 2014 IEEE International Conference on Industrial Technology. Busan: ICIT, 2014: 359-364.
[9]   傅仕航, 侯庆会, 岳奥飞, 等 基于" 第二类”双重移相控制的双有源桥DC-DC变换器[J]. 浙江大学学报: 工学版, 2018, 52 (06): 1167- 1176
FU Shi-hang, HOU Qing-hui, YUE Ao-fei, et al Study on dual active bridge DC-DC converter based on the second dual-phase-shifting control[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (06): 1167- 1176
[10]   颜湘武, 王杨, 葛小凤, 等 双管Buck-Boost变换器的带输入电压前馈双闭环控制策略[J]. 电力自动化设备, 2016, 36 (10): 65- 77
YAN Xiang-wu, WANG Yang, GE Xiao-feng, et al Dual-loop control with input voltage feedforward for dual-switch Buck-Boost converter[J]. Electric Power Automation Equipment, 2016, 36 (10): 65- 77
[11]   沈茜, 任磊, 龚春英, 等 一种基于系统辨识的Buck型变换器特征参数提取方法[J]. 中国电机工程学报, 2016, 36 (20): 5624- 5631
SHEN Qian, REN Lei, GONG Chun-ying, et al A technique based on system identification of feature parameter extraction for the buck converters[J]. Proceedings of the CSEE, 2016, 36 (20): 5624- 5631
[12]   陈晨, 程帅, 陶诗飞, 等 基于可变遗忘因子RLS的Boost转换器在线多参数辨识[J]. 微电子学与计算机, 2017, 34 (10): 42- 46
CHEN Chen, CHENG Shuai, TAO Shi-fei, et al Variable forgetting factor RLS based online multiparameter identification for Boost converter[J]. Microelectronics and Computer, 2017, 34 (10): 42- 46
[13]   陈晨, 童乔凌, 闵闰, 等 基于RLS的Boost转换器在线多参数辨识研究[J]. 微电子学与计算机, 2017, 34 (05): 100- 109
CHEN Chen, TONG Qiao-ling, MIN Run, et al Study of RLS-based online multiparameter identification for Boost converter[J]. Microelectronics and Computer, 2017, 34 (05): 100- 109
[14]   姚良忠, 吴婧, 王志冰, 等. 柔性高压直流环网直流侧故障保护策略研究[J]. 中国电机工程学报, 2017, 37(增1): 1-11.
YAO Liang-zhong, WU Jing, WANG Zhi-bing, et al. Studies on DC fault protection strategies for MMC based HVDC grid [J]. Proceedings of the CSEE, 2017, 37(Suppl. 1): 1-11.
[15]   祁晓敏, 裴玮, 李鲁阳, 等 基于限流电感电压的多端交直流混合配电网直流故障检测方案[J]. 电网技术, 2019, (02): 560- 568
QI Xiao-min, PEI Wei, LI Lu-yang, et al DC fault detection scheme for multi-terminal AC/DC hybrid distribution network based on current-limiting inductor voltage[J]. Power System Technology, 2019, (02): 560- 568
[16]   张夏菲. 非参数核密度估计负荷模型在电网可靠性评估中的应用[D]. 重庆: 重庆大学, 2010: 10.
ZHANG Xia-fei. The application of non-parametric kernel density estimation load model in power system reliability evaluation [D]. Chongqing: Chongqing University, 2010: 10.
[17]   何耀耀, 闻才喜, 许启发 基于Epanechnikov核与最优窗宽组合的中期电力负荷概率密度预测方法[J]. 电力自动化设备, 2016, 36 (11): 120- 126
HE Yao-yao, WEN Cai-xi, XU Qi-fa Mid-term power load probability density forecast based on Epanechnikov kernel and optimal window bandwidth[J]. Electric Power Automation Equipment, 2016, 36 (11): 120- 126
[18]   杨楠, 黄禹, 叶迪, 等 基于自适应多变量非参数核密度估计的多风电场出力相关性建模[J]. 中国电机工程学报, 2018, 38 (13): 3805- 4021
YANG Nan, HUANG Yu, YE Di, et al Modeling of output correlation of multiple wind farms based on adaptive multivariable nonparametric kernel density estimation[J]. Proceedings of the CSEE, 2018, 38 (13): 3805- 4021
[1] MENG Pei-pei, ZHANG Jun-ming, QIAN Zhao-ming. Modeling and predicting for common mode noise in Boost converter[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(10): 1851-1856.