Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1835-1842    DOI: 10.3785/j.issn.1008-973X.2019.09.023
Environmental Engineering     
Distribution characteristics of perfluorinated compounds in sludge wastewater and sludge from drinking water treamtment plant
Min SUN,Jun-xin BAO,Bei XU,Hao ZHOU
Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
Download: HTML     PDF(1071KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The distribution characteristics of five perfluorinated compounds (PFCs) in Yangtze River raw water, process water, sludge wastewater and sludge in drinking water treatment plant (DWTP) were quantified, in view of the potential water quality safety risks of PFCs in drinking water, and to provide data support for DWTP controlled PFCs. Material balance of PFCs in flocculation, settling and filtration process was analyzed; the PFCs distribution between the sludge wastewater and sludge and the impact of cation exchange capacity (CEC) on PFCs distribution were analyzed. Results show that perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) are mainly distributed in raw water, process water and sludge wastewater in DWTP, while in sludge perfluoronnonanoic acid (PFNA), perfluorodecanoic acid (PFDA) and PFOS are the main PFC contaminant. The sludge-water partition coefficient is positively correlated with the organic carbon fraction for perfluorabutyric acid (PFBA), PFOA, PFNA and PFDA; and the functional group is one of the factors affecting the distribution of PFOS. The PFCs mass fraction is higher in large size fractions from the flocculation tank and front of settling tank, while it is lower in large size fractions from the middle and rear sections of the settling tank and V-filter. A significantly positive correlation between PFCs mass fraction and CEC in sludge is observed.



Key wordsdrinking water treatment plant (DWTP)      perfluorinated compounds (PFCs)      sludge wastewater      sludge      material balance      sludge-water partition coefficient     
Received: 13 July 2018      Published: 12 September 2019
CLC:  TU 991  
Cite this article:

Min SUN,Jun-xin BAO,Bei XU,Hao ZHOU. Distribution characteristics of perfluorinated compounds in sludge wastewater and sludge from drinking water treamtment plant. Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1835-1842.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.023     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1835


饮用水厂排泥水及污泥中全氟化合物分布特征

针对饮用水中全氟化合物(PFCs)存在的潜在水质安全风险,为饮用水厂控制PFCs提供数据支持,探究长江南京段原水和饮用水厂常规处理工艺过程水、排泥水中5种PFCs的质量浓度和污泥中5种PFCs的质量分数分布特征,分析PFCs在絮凝沉淀、过滤工艺中的物料平衡,排泥水和污泥间的PFCs分配规律及阳离子交换量对污泥中PFCs分布影响. 结果表明:饮用水厂的原水、过程水和排泥水中全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)的质量浓度最高,污泥中质量分数最高的为全氟壬酸(PFNA)、全氟癸酸(PFDA)和PFOS. 全氟丁酸(PFBA)、PFOA、PFNA和PFDA的泥-水分配系数与有机碳质量分数正相关,官能团是影响PFOS在泥-水间的分配规律的因素之一. 对于絮凝池和沉淀池前段污泥,粒径越大,PFCs质量分数越高;对于沉淀池中、后段和V型滤池污泥,粒径越小,PFCs质量分数越高;PFCs的质量分数与污泥中阳离子交换量(CEC)显著正相关.


关键词: 饮用水厂(DWTP),  全氟化合物(PFCs),  排泥水,  污泥,  物料平衡,  泥-水分配系数 
污泥样品 woc / % R0 / % wmetal / 10?31 w(CEC)/(cmol·kg?1)
>250 μm 63~250 μm <63 μm Al Fe Ca Mg
絮凝池 全粒径 8.39 19 19 62 79.67 44.21 20.06 11.69 79.24
>250 μm 11.15 94.79 48.58 17.06 12.12 95.32
63~250 μm 7.70 82.17 44.79 18.59 12.01 73.96
<63 μm 6.33 68.38 40.43 23.45 12.55 58.84
沉淀池 全粒径 9.01 15 19 66 78.58 43.63 20.87 12.15 82.60
>250 μm 6.74 96.25 48.67 15.08 11.62 60.04
63~250 μm 7.29 81.33 44.38 18.89 12.03 71.32
<63 μm 10.07 61.13 39.64 23.29 11.75 88.00
V型滤池 全粒径 7.98 24 76 75.33 40.63 15.75 10.49 67.08
63~250 μm 6.88 88.25 40.77 14.29 9.97 57.72
<63 μm 9.39 68.05 40.61 18.11 10.92 85.56
Tab.1 Basic physical and chemical properties of sludge from DWTP
Fig.1 Mass concentration of PFCs in raw water, process water, sludge wastewater, and mass fraction of PFCs in sludge from drinking water treatment plant (DWTP)
Fig.2 Material balance diagram of PFCs in flocculation, settling and filtration processes
Fig.3 Material balance of PFCs in settling tank and V-filter
排泥构筑物 R3 / % R4 / %
注:括号内为实际计算取值.
折板絮凝池 1.0~2.5 (2.5) 1.76~6.69 (3.0)
平流式沉淀池 2.0~5.5 (5.5) 0.16~2.27 (1.5)
V型滤池 3.0~6.0 (6.0) 0.04~0.27 (0.2)
Tab.2 Parameters of sludge wastewater in each structure from DWTP
PFCs η1 / % η2 / % PFCs η1 / % η2 / %
PFBA 98.41 99.45 PFDA 100.75 99.75
PFOA 98.05 99.94 PFOS 98.14 99.70
PFNA 99.02 99.78
Tab.3 Equilibrium rate of PFCs in flocculation, settling and filtration processes
Fig.4 Mass fraction of PFCs in different size fractions of sludge
PFCs lg Kd lg Koc
PFBA 1.10±0.27 2.07±0.32
PFOA 1.22±0.16 2.23±0.16
PFNA 2.01±0.15 3.08±0.07
PFDA 2.29±0.23 3.36±0.14
PFOS 1.50±0.12 2.56±0.06
Tab.4 Partition coefficient of PFCs between sludge and sludge wastewater
Fig.5 Relationship between fraction organic carbon and partition coefficient
Fig.6 Correlation between total PFCs mass fraction and content of cation exchange capacity (CEC) in each sludge fraction
相关性 w (PFBA) w (PFOA) w (PFNA) w (PFDA) w (PFOS) ws
注:**表示在0.01水平上显著相关;*表示在0.05水平上显著相关.
w (CEC) ?0.184 0.356 0.709** 0796** 0.531* 0.851**
Tab.5 Correlation of cation exchange capacity (CEC) and mass fraction of PFCs in sludge from DWTP
[1]   MARTIN J W, SMITHWICK M M, BRAUNE B M, et al Identification of long-chain perfluorinated acids in biota from the Canadian Arctic[J]. Environmental Science and Technology, 2004, 38 (2): 373- 380
doi: 10.1021/es034727+
[2]   PREVCDOUROS K, COUSINS I T, BUCK R C, et al Sources, fate and transport of perfluorocarboxylates[J]. Environmental Science and Technology, 2006, 40 (1): 32- 44
doi: 10.1021/es0512475
[3]   YAMASHITA N, KANNAN K, TANIYASU S, et al A global survey of perfluorinated acids in oceans[J]. Marine Pollution Bulletin, 2005, 51 (8-21): 658- 668
[4]   NGUYEN H L, CHO C R, KANNAN K, et al A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: distributions and bioconcentration profiles[J]. Journal of Hazardous Materials, 2016, 323 (Pt A): 116- 127
[5]   YANG L, ZHU L, LIU Z Occurrence and partition of perfluorinated compounds in water and sediment from Liao River and Taihu Lake, China[J]. Chemosphere, 2011, 83 (6): 806- 814
doi: 10.1016/j.chemosphere.2011.02.075
[6]   ZHAO X, XIA X, ZHANG S, et al Spatial and vertical variations of perfluoroalkyl substances in sediments of the Haihe River, China[J]. Journal of Enviromental Sciences, 2014, 26 (8): 1557- 1566
[7]   BAO J, LIU W, LIU L, et al Perfluorinated compounds in urban river sediments from Guangzhou and Shanghai of China[J]. Chemosphere, 2010, 80 (2): 123- 130
doi: 10.1016/j.chemosphere.2010.04.008
[8]   周浩, 孙敏 净水厂中全氟化合物分布特征及UV/SO32-[J]. 中国给水排水, 2017, 33 (19): 6- 10
ZHOU Hao, SUN Min Distribution of perfluorinated compounds in water supply plant and its reductive degradation by UV/SO32-[J]. China Water and Wastewater, 2017, 33 (19): 6- 10
[9]   张鸿, 陈清武, 王鑫璇, 等 自来水处理工艺对溶解相中全氟化合物残留的影响[J]. 环境科学, 2013, 34 (9): 3467- 3473
ZHANG Hong, CHEN Qing-wu, WANG Xin-xuan, et al Influence of tap water treatment on perfluorinated compounds residue in the dissolved phase[J]. Environmental Science, 2013, 34 (9): 3467- 3473
[10]   许青. 净水厂排泥水安全回用消毒技术研究[D]. 广州: 广州大学, 2008: 16-23.
XU Qing. Study on safety reuse and disinfection technology of sludge water in water supply plant [D]. Guangzhou: Guangzhou University, 2008: 16-23.
[11]   陈停. 净水厂生产废水回用强化低浊水混凝及水质安全性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017: 8-12.
CHEN Ting. Research on drinking water plant (DWP) streams recycle for strengthen of low turbidity water coagulation efficiency and water quality safety [D]. Harbin: Harbin Institute of Technology, 2017: 8-12.
[12]   LU Z, SONG L, ZHAO Z, et al Occurrence and trends in concentrations of perfluoroalkyl substances (PFASs) in surface waters of eastern China[J]. Chemosphere, 2015, 119: 820- 827
doi: 10.1016/j.chemosphere.2014.08.045
[13]   魏立娥. 双台子河口水体全氟化合物污染分布及风险评估研究[D]. 大连: 大连海事大学, 2015: 3-5.
WEI Li-e. Study on pollution distribution and risk assessment of perfluorinated compounds in Shuangtaizi estuary[D]. Dalian: Dalian Maritime University, 2015: 3-5.
[14]   周华, 陈卫, 孙敏, 等 南京城市给水厂排泥水节水潜力分析[J]. 给水排水, 2009, 35 (11): 18- 21
ZHOU Hua, CHEN Wei, SUN Min, et al Analysis of sludge disposal wastewater saving potential in Nanjing water plant[J]. Water and Wastewater Engineering, 2009, 35 (11): 18- 21
doi: 10.3321/j.issn:1000-4602.2009.11.006
[15]   DENG S, ZHOU Q, YU G, et al Removal of perfluorooctanoate from surface water by polyaluminium chloride coagulation[J]. Water Research, 2011, 45 (4): 1774- 80
doi: 10.1016/j.watres.2010.11.029
[16]   孙敏, 周园 净水厂污泥中多环芳烃和金属的分布特征[J]. 中南大学学报: 自然科学版, 2015, 46 (1): 366- 371
SUN Min, ZHOU Yuan Distribution characteristics of polycyclic aromatic hydrocarbons and metal in sludge from drinking water plant[J]. Journal of Central South University: Science and Technology, 2015, 46 (1): 366- 371
doi: 10.11817/j.issn.1672-7207.2015.01.049
[17]   DING G, XUE H, ZHANG J, et al Occurrence and distribution of perfluoroalkyl substances (PFASs) in sediments of the Dalian Bay, China[J]. Marine Pollution Bulletin, 2017, 127: 285- 288
[18]   EMANUELA P, GEMMA C, LLORCA M, et al Seasonal variations in the occurrence of perfluoroalkyl substances in water, sediment and fish samples from Ebro Delta (Catalonia, Spain)[J]. Science of the Total Environment, 2017, 607-608: 933- 943
doi: 10.1016/j.scitotenv.2017.07.025
[19]   ZHANG Y, MENG W, GUO C, et al Determination and partitioning behavior of perfluoroalkyl carboxylic acids and perfluorooctanesulfonate in water and sediment from Dianchi Lake, China[J]. Chemosphere, 2012, 88 (11): 1292- 1299
doi: 10.1016/j.chemosphere.2012.03.103
[20]   ROOS P H, ANGERER J, DIETER H, et al Perfluorinated compounds (PFC) hit the headlines: meeting report on a satellite symposium of the annual meeting of the german society of toxicology[J]. Archives of Toxicology, 2008, 82 (1): 57- 59
doi: 10.1007/s00204-007-0225-2
[21]   孙敏, 周华, 袁哲, 等 城市给水厂排泥水的减量化试验研究[J]. 中国给水排水, 2010, 26 (9): 1- 4
SUN Min, ZHOU Hua, YUAN Zhe, et al Study on reduction of sludge water in urban water treatment plants[J]. China Water and Wastewater, 2010, 26 (9): 1- 4
[22]   ZHAO L, ZHU L, YANG L, et al Distribution and desorption of perfluorinated compounds in fractionated sediments[J]. Chemosphere, 2012, 88 (11): 1390- 1397
doi: 10.1016/j.chemosphere.2012.05.062
[23]   滕新荣. 表面物理化学[M]. 北京: 化学工业出版社, 2009: 58-59.
[24]   PAN G, YOU C Sediment–water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary[J]. Environmental Pollution, 2010, 158 (5): 1363- 1367
doi: 10.1016/j.envpol.2010.01.011
[25]   ZHANG R, YAN W, JING C Experimental and molecular dynamic simulation study of perfluorooctane sulfonate adsorption on soil and sediment components[J]. Journal of Environmental Sciences, 2015, 29 (3): 131- 138
[26]   PAN G, ZHOU Q, LUAN X, et al Distribution of perfluorinated compounds in Lake Taihu (China): impact to human health and water standards[J]. Science of the Total Environment, 2014, 487 (1): 778- 784
[27]   JEON J, KANNAN K, LIM B J, et al Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles[J]. Journal of Environmental Monitoring, 2011, 13 (6): 1803- 1810
doi: 10.1039/c0em00791a
[28]   HIGGINS C P, LUTHY R G Modeling sorption of anionic surfactants onto sediment materials: an a priori approach for perfluoroalkyl surfactants and linear alkylbenzene sulfonates[J]. Environmental Science and Technology, 2007, 41 (9): 3254- 3261
doi: 10.1021/es062449j
[29]   HUGO C P, MALIN U, AHRENS L, et al Sorption of perfluoroalkyl substances (PFASs) to an organic soil horizon-effect of cation composition and pH[J]. Chemosphere, 2018, 207: 183- 191
doi: 10.1016/j.chemosphere.2018.05.012
[30]   YOU C, JIA C, PAN G Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface[J]. Environmental Pollution, 2010, 158 (5): 1343- 1347
doi: 10.1016/j.envpol.2010.01.009
[31]   AHRENS L, TANIYASU S, YEUNG L W, et al Distribution of polyfluoroalkyl compounds in water, suspended particulate matter and sediment from Tokyo Bay, Japan[J]. Chemosphere, 2010, 79 (3): 266- 272
doi: 10.1016/j.chemosphere.2010.01.045
[1] XU Yu-feng, WANG Rang, TANG Feng-bing, LIN Jia-qi, ZHANG Wei, LI Si-min. Affection of distribution ratio of influent on nitrogen and phosphorus removal of step feed-A2/O process[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 761-768.
[2] WANG Dong-xing, WANG Hong-wei, XIAO Jie. Experimental study on water stability property of dredged sludge solidified with reactive MgO[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(4): 719-726.
[3] HU Ya-yuan, YU Qi-zhi, ZHANG Chao-jie, QIAN Jing-lin, XIE Jia-qi. Duncan-Chang model for fiber reinforced solidified sludge[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(8): 1500-1508.
[4] YANG Jie, LIU Tian lu, MAO Fei yan, HUANG Qun xing, LIN Bing cheng, CHI Yong. Removal of emulsified water in petroleum sludge using micro-emulsion method[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(2): 370-377.
[5] LI Jian, LIU Meng, DUAN Yu feng, XU Chao. Physicochemical analysis on hydrothermal upgrading of sewage sludge with lignite for solid fuel[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(2): 327-332.
[6] MAO Hua zhen, WANG Fei, MAO Fei yan, CHI Yong, LU Sheng yong, CEN Ke fa. Effect of thermal hydrolysis on moisture distribution of sewage sludge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(12): 2283-2288.
[7] HAN Xu, MAO Fei yan, HUANG Qun xing, CHI Yong, YAN Jian hua. Influence of impurities on viscosity of oil sludge[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(11): 2064-2068.
[8] PAN Zhi-juan, HUANG Qun-xing, Moussa-Mallaye Alhadj-Mallah, WANG Jun, CHI Yong, YAN Jian-hua.
Effect of active carbon on microwave pyrolysis characteristics of petroleum sludge
[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(6): 1166-1172.
[9] CHEN Tong, ZHAN Ming-xiu, LIN Xiao-qing, LI Xiao-dong, LU Sheng-yong, YAN Jian-hua. Dioxin suppression gases emission characteristics during particular sludge drying process[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(2): 322-329.
[10] HONG Chen, XING Yi, WANG Zhi-qiang, SI Yan-xiao, ZHOU Liang. Influence of surfactant conditioning on sludge dewaterability in various pH value[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(5): 850-857.
[11] SHAO Zhi-wei, HUANG Ya-ji, ZHANG Qiang, LIU Pei-gang, YAN Yu-peng.
Co-combustion characteristics of sludge and bituminous coal under O2/CO2 atmosphere
[J]. Journal of ZheJiang University (Engineering Science), 2014, 48(10): 1739-1745.
[12] FU Cheng-long, MA Hong-lei, CHI Yong, YAN Jian-hua, NI Ming-jiang. Study on migration and stability of total Cr
 in tannery sludge by thermal hydrolysis treatment
[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(9): 1631-1636.
[13] HUANG Geng, JIANG Jun-qiu, ZHAO Qing-liang, YU Hang, WANG Kun. Performance of sludge degradation and electricity production accelerated by bioelectrogenesis in sludge anaerobic composting[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(5): 883-888.
[14] MA Jin, LIU Chun, ZHANG Lei, ZHANG Jing, WU Gen, YANG Jing-liang,LUO Xiang. Variations of mixed liquor properties of activated sludge in microbubble aeration[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(10): 1877-1882.
[15] XIE Hao-hui, MA Hong-lei, CHI Yong, MA Zeng-yi. Bound water measurement methods and moisture distribution within sewage sludge[J]. Journal of ZheJiang University (Engineering Science), 2012, 46(3): 503-508.