Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (9): 1704-1710    DOI: 10.3785/j.issn.1008-973X.2019.09.009
Civil and Architecture Engineering     
Spatiotemporal change rules of water quality in cut-off water pipelines in district metering areas (DMA)
Da CHEN1(),Jing-qing LIU1,*(),Huan-yu CHEN2,Ruo-wei WANG1
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Binhai Industrial Technology Research Institute of Zhejiang University, Zhejiang University, Tianjin 300301, China
Download: HTML     PDF(1135KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The pilot platform was constructed with water pipelines of nine years old to study the spatiotemporal changes of essential physical, chemical and biological parameters of water in cut-off pipelines, in order to explore the potential impact of cut-off pipelines and stagnant areas which are created in the construction of district metering areas (DMAs) on water quality. Results show that, as the depth of cut-off pipeline increases, the biofilm and limescale fall off more quickly and the water quality deterioration rate gets faster; the temporal changes of iron release, turbidity and microorganism vary with time at different depths. After twelve hours, the water quality deterioration rate was significantly accelerated. The correlation analysis of the deterioration of water quality parameters shows that, the deeper the depth of cut-off pipeline is, the less the water disturbed by the main pipe is and the higher the correlation level of each parameter is.



Key wordsdistrict metering area (DMA)      cut-off pipeline      iron release      stagnation      spatiotemporal change     
Received: 03 March 2019      Published: 12 September 2019
CLC:  TU 991  
Corresponding Authors: Jing-qing LIU     E-mail: 18258883680@126.com;liujingqing@zju.edu.cn
Cite this article:

Da CHEN,Jing-qing LIU,Huan-yu CHEN,Ruo-wei WANG. Spatiotemporal change rules of water quality in cut-off water pipelines in district metering areas (DMA). Journal of ZheJiang University (Engineering Science), 2019, 53(9): 1704-1710.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.09.009     OR     http://www.zjujournals.com/eng/Y2019/V53/I9/1704


独立计量分区截断管水质时空变化规律

为探究城市供水管网独立计量分区(DMA)建设过程中形成的分区截断管道和滞流区对供水管网水质的潜在影响,以管龄为9 a的实际供水管道为研究对象,设计并搭建试验平台,研究DMA分区截断管道内管网水关键水质理化指标、生物指标的时空变化规律. 研究结果表明:随着截断管深度的增加,管壁生物膜和管垢脱落速度加快,水质恶化速率加快;铁释放、浊度和活菌浓度在不同管深处随时间的变化情况不同,12 h后,水质恶化速率明显加快;各水质指标恶化的相关性分析显示,截断管越深,水质受到主干管的扰动越少,各指标相关性水平越高.


关键词: 独立计量分区(DMA),  截断管,  铁释放,  滞流工况,  时空变化 
Fig.1 Water quality pilot platform of cut-off pipelines
Fig.2 Photos of ductlie cast-iron pipe inner surface
Fig.3 Scanning electron microscope images of limescale on ductlie cast-iron pipe
指标 数值 单位
水温 10±2 °C
电导率 215±10 μs/cm
浊度 0.7±0.3 NTU
溶解氧 12±0.5 mg/L
pH 7.3±0.1 /
氮的质量浓度 2.2±0.1 mg/L
铁的质量浓度 0.07±0.03 mg/L
余氯的质量浓度 0.4±0.05 mg/L
HPC 20±20 CFU/mL
Tab.1 Outlet water quality indexes of water tank
Fig.4 Changes of water quality parameters in pilot platform
Fig.5 Changes of dissolved oxygen and iron mass concentration in pilot platform
Fig.6 Trend relationship between DO and iron mass concentration
D/m TU DO σ HPC
注:*表示在0.01水平上显著相关,**表示在0.05水平上显著相关
1 0.908** ?0.581* 0.937** 0.746**
2 0.876** ?0.893** 0.986** 0.731**
3 0.902** ?0.921** 0.985** 0.786**
4 0.990** ?0.965** 0.978** 0.712**
Tab.2 Pearson correlation and significance levels between iron mass concentration and other parameters
D/m TU DO σ HPC
注:*表示在0.01水平上显著相关,**表示在0.05水平上显著相关
1 ?0.581* ?0.684** ?0.545* ?0.724**
2 ?0.893** ?0.727** ?0.906** ?0.558*
3 ?0.921** ?0.813** ?0.927** ?0.767**
4 ?0.965** ?0.960** ?0.953** ?0.614**
Tab.3 Pearson correlation and significance levels between DO and other parameters
Fig.7 Trend of correlation between water quality parameters
[1]   PRABHATA K, ASHOK K Decomposition of large water distribution systems[J]. Journal of Environmental Engineering, 1990, 116 (2): 269- 283
doi: 10.1061/(ASCE)0733-9372(1990)116:2(269)
[2]   RICARDO G, JOAQUIM S Different design criteria for district metered areas in water distribution networks[J]. Procedia Engineering, 2015, 119 (1): 1221- 1230
[3]   MARTíNEZ-SOLANO F, PEDRO L, MORA MELIá D, et al Combining skeletonization, setpoint curves, and heuristic algorithms to define district metering areas in the battle of water networks district metering areas[J]. Journal of Water Resources Planning and Management, 2018, 144 (6): 4018023- 4018029
doi: 10.1061/(ASCE)WR.1943-5452.0000938
[4]   HAJEBI S, TEMATE S, BARRETT S, et al Water distribution network sectorisation using structural graph partitioning and multi-objective optimization[J]. Procedia Engineering, 2014, 89 (C): 1144- 1151
[5]   DE PAOLA F, FONTANA N, GALDIERO E, et al Optimal design of district metered areas in water distribution networks[J]. Procedia Engineering, 2014, 70: 449- 457
doi: 10.1016/j.proeng.2014.02.050
[6]   WU Y, LIU S, WU X, et al Burst detection in district metering areas using a data driven clustering algorithm[J]. Water Research, 2016, 100: 28- 37
doi: 10.1016/j.watres.2016.05.016
[7]   GONELAS K, CHONDRONASIOS A, KANAKOUDIS V, et al Forming DMAs in a water distribution network considering the operating pressure and the chlorine residual concentration as the design parameters[J]. Journal of Hydroinformatics, 2017, 19 (6): 900- 910
doi: 10.2166/hydro.2017.157
[8]   ARMAND H, STOIANOV I, GRAHAM N Impact of network sectorisation on water quality management[J]. Journal of Hydroinformatics, 2018, 20 (2): 424- 439
doi: 10.2166/hydro.2017.072
[9]   VANESSA C D, Impacts Of district metered areas implementation on water quality in a full-scale drinking water distribution systems [D]. Montreal: University of Montreal, 2016.
[10]   蒋伟, 柳景青, 叶萍, 等 氧化还原电位作为铁释放监测参数的中试研究[J]. 浙江大学学报: 工学版, 2015, 49 (4): 769- 775
JIANG Wei, LIU Jing-qing, YE Ping, et al Use of oxidation-reduction potential to monitor iron release from corroded iron pipes in drinking water distribution system[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (4): 769- 775
[11]   TONG H, LI Z Analysis of iron and manganese release effect in drinking water systems from a new perspective[J]. IOP Conference Series: Materials Science and Engineering, 2019, 484: 12058- 12063
doi: 10.1088/1757-899X/484/1/012058
[12]   叶萍, 申屠华斌, 陈环宇, 等 滞流工况下管网水中微生物群落对铁释放的影响[J]. 中国环境科学, 2017, (12): 4578- 4584
YE Ping, SHENTU Hua-bin, CHEN Huan-yu, et al Influence of microbial community on iron release under stagnation condition in drinking water systems[J]. China Environmental Science, 2017, (12): 4578- 4584
doi: 10.3969/j.issn.1000-6923.2017.12.022
[13]   申屠华斌, 柳景青, 叶萍, 等 滞流前后管道生物膜微生物群落径向分布差异[J]. 浙江大学学报: 工学版, 2017, 51 (7): 1317- 1323
SHENTU Hua-bin, LIU Jing-qing, YE Ping, et al Radial distribution shifts of microbial communities in biofilms developed under stagnation condition in water supply pipes[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (7): 1317- 1323
[14]   SHAIKH M, ALSUHAIMI A, HANAFIAH M, et al Release of organic contaminants migrating from polyvinyl chloride polymeric into drinking water under three successive stagnant periods of time[J]. Desalination and Water Treatment, 2019, 149: 105- 116
doi: 10.5004/dwt
[15]   陈环宇, 柳景青, 魏宗元, 等 供水管网大口径管道管垢中污染物分布的径向差异[J]. 中国环境科学, 2015, 35 (9): 2706- 2712
CHEN Huang-yu, LIU Jing-qing, WEI Zong-yuan, et al Radial differences in contaminant distribution in large-diameter pipe scales of main pipelines in drinking water distribution system[J]. China Environmental Science, 2015, 35 (9): 2706- 2712
doi: 10.3969/j.issn.1000-6923.2015.09.023
[16]   SHENTU H, LIU J, CHEN H, et al Change regularity of water quality parameters in leakage flow conditions and their relationship with iron release[J]. Water Research, 2017, 124: 353- 362
doi: 10.1016/j.watres.2017.07.027
[17]   陈磊, 刘珂, 柳景青, 等 给水滞流管水质指标变化规律的研究[J]. 中国农村水利水电, 2015, 09: 44- 51
CHEN Lei, LIU Ke, LIU Jing-qing, et al Research on the change of water quality in stagnation in water distribution networks[J]. China Rural Water and Hydropower, 2015, 09: 44- 51
doi: 10.3969/j.issn.1007-2284.2015.09.010
[18]   SARIN P, SNOEYINK V L, LYTLE D A, et al Iron corrosion scales: model for scale growth, iron release, and colored water formation[J]. Journal of Environmental Engineering, 2004, 76 (4): 364- 373
[19]   SARIN P, SNOEYINK V L, BEBEE J, et al Iron release from corroded iron pipes in drinking water distribution systems: effect of dissolved oxygen[J]. Water Research, 2004, 38 (5): 1259- 1269
doi: 10.1016/j.watres.2003.11.022
[1] SHENTU Hua-bin, LIU Jing-qing, YE-Ping, LI Hang-jia, XU Bing, PENG Hong-xi, WANG Lei. Radial distribution shifts of microbial communities in biofilms developed under stagnation condition in water supply pipes[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(7): 1317-1323.
[2] JIANG Wei, LIU Jing-qing, YE Ping, LI Hang-jia. Use of oxidation-reduction potential to monitor iron release from corroded iron pipes in drinking water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2015, 49(4): 769-775.
[3] GAO Jiu-li, LIU Jing-qing, ZHANG Tu-qiao, LI Cong, JIANG Wei. Effects of chloride and humic acid on iron release in water distribution system[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(8): 1321-1328.