Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (4): 724-731    DOI: 10.3785/j.issn.1008-973X.2019.04.013
    
Composite effect of steel-concrete-steel elements underaxial compression for nuclear power plant
Ya-jun JIANG(),Si-jia CHEN,Cheng-jun HUANG,Xiao-bing SONG*()
Department of Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
Download: HTML     PDF(1484KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The stress redistribution rules of the steel plates and concrete in steel-concrete-steel (SCS) elements under axial compression were analyzed based on Poisson’s effect of materials in order to analyze the composite effect between the steel and concrete in SCS structures under axial compression for nuclear power plants. Two kinds of stress states of the steel plates and concrete, and the lateral constraint stresses of concrete were found from the composite effect. Then the axial compression test results of SCS element were used to demonstrate the theoretical analysis. Results show that the stress redistribution rules of the steel plates and concrete depend on the relative change of the Poisson’s ratio of the two materials. The steel plates are in compression-tension plane stress state and the concrete is in triaxial compression stress state in the limit state of bearing capacity when the SCS element is under axial compression. The " confinement strengthening effect” of concrete is found in SCS element subjected to axial compression.



Key wordssteel-concrete-steel (SCS) element      axial compression      Poisson’s effect      composite effect      confinement strengthening effect     
Received: 06 February 2018      Published: 28 March 2019
CLC:  TU 398  
Corresponding Authors: Xiao-bing SONG     E-mail: yj_jiang@sjtu.edu.cn;xbsong@sjtu.edu.cn
Cite this article:

Ya-jun JIANG,Si-jia CHEN,Cheng-jun HUANG,Xiao-bing SONG. Composite effect of steel-concrete-steel elements underaxial compression for nuclear power plant. Journal of ZheJiang University (Engineering Science), 2019, 53(4): 724-731.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.04.013     OR     http://www.zjujournals.com/eng/Y2019/V53/I4/724


核电用双钢板-混凝土单元轴心受压组合效应

为了研究核电用双钢板-混凝土(SCS)结构在轴压荷载作用下钢与混凝土的组合效应,从材料泊松效应的角度出发,分析双钢板-混凝土单元中钢板与混凝土的应力重分布规律,总结钢混组合效应下的2类应力状态和混凝土受侧向约束的特点,采用轴压试验进行论证. 研究表明:钢板与混凝土的应力重分布规律取决于2种材料泊松比的相对变化,对于单轴受压的SCS单元,在达到承载力极限状态时,钢板处于平面压-拉应力状态,混凝土处于三向受压应力状态并存在“约束强化效应”.


关键词: 双钢板-混凝土(SCS)单元,  轴心受压,  泊松效应,  组合效应,  约束强化效应 
Fig.1 SCS structures in nuclear power plants
Fig.2 Poisson's ratio of steel plate and concrete[10-11]
Fig.3 SCS element coordinate and stress symbols
Fig.4 Stress states of steel plates and concrete
Fig.5 Specimen of steel-concrete-steel element
Fig.6 Loading device of steel-concrete -steel element
Fig.7 Layout of LVDTs
混凝土 钢板 对穿钢筋 栓钉
${f_{{\rm{cu}}}}$/MPa ${t_{\rm{c}}}$/mm ${f_{\rm{y}}}$/MPa ${t_{\rm{s}}}$/mm ${E_{\rm{s}}}$/MPa $f_{\rm{y}}^{\rm{t}}$/MPa ${d_{\rm{t}}}$/mm ${B_{\rm{t}}}$/mm ${d_{\rm{s}}}$/mm ${B_{\rm{s}}}$/mm
42 260 310 2.95 2.04×105 360 10 150 8 75
Tab.1 Main material parameters of SCS element
Fig.8 Photo of damaged SCS element
Fig.9 Compressive load- strain relationship of SCS element
Fig.10 Stress trajectory of steel plates
Fig.11 In-plane stress trajectory of concrete
Fig.12 Stress-strain relationship of tie bars
Fig.13 Compressive stress-strain relationship of concrete
Fig.14 Poisson’s ratio-compressive strain relationship of SCS element
文献 编号 ${f_{\rm{c}}}$/MPa ${f_{\rm{y}}}$/MPa ${d_{{\rm{sc}}}}$/mm ${t_{{\rm{sc}}}}$/mm ${t_{\rm{s}}}$/mm ${P_{{\rm{no}}}}$/kN ${P_{{\rm{test}}}}$/kN ${P_{{\rm{no}}}}$/ ${P_{{\rm{test}}}}$
文献[15] SCW-2 26.1 256(332) 1 160 230 4.8(8) 10 653 12 123 0.88
文献[15] SCW-4 26.1 256(332) 1 160 230 4.8(8) 10 653 11 433 0.93
文献[16] SC-100K 23.3 253(343) 684 320 3.2(22) 10 613 11 300 0.94
文献[16] SC-67K 23.3 253(343) 684 320 3.2(22) 10 613 11 800 0.90
文献[17] DSW-4 37.4 370 700 166 3(8) 6 630 7 780 0.85
本文试验 S3-10 33.6 310 800 266 2.95 8 452 9 380 0.90
Tab.2 Comparison of calculated bearing capacity of standard fomula and experimental value
[1]   冷予冰, 宋晓冰, 葛鸿辉, 等 钢板混凝土简支梁抗剪承载模式及承载力分析[J]. 土木工程学报, 2015, 48 (07): 1- 11
LENG Yu-bing, SONG Xiao-bing, GE Hong-hui, et al Study on shear resisting pattern and strength of simply supported steel-concrete-steel sandwich beams[J]. China Civil Engineering Journal, 2015, 48 (07): 1- 11
[2]   潘蓉, 吴婧姝, 张心斌 钢板混凝土结构在核电工程中应用的发展状况[J]. 工业建筑, 2014, 44 (12): 1- 7
PAN Rong, WU Jing-shu, ZHANG Xin-bin Application and development of steel plate reinforced concrete structure in nuclear power engineering[J]. Industrial Construction, 2014, 44 (12): 1- 7
[3]   AISC. Specification for safety-related steel structures for nuclear facilities: ANSI/AISC N690–12 [S]. Chicago: AISC, 2015.
[4]   JEAC. Seismic design of steel plate concrete technical regulations: JEAC 4618–2009 [S]. Tokyo: JEA, 2009.
[5]   CLUBLEY S K, MOY S S J, XIAO R Y Shear strength of steel–concrete–steel composite panels. Part I—testing and numerical modeling[J]. Journal of Constructional Steel Research, 2003, 59 (6): 781- 794
doi: 10.1016/S0143-974X(02)00061-5
[6]   CHOI B J, KIM W K, KIM W B, et al Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures[J]. Steel and Composite Structures, 2013, 14 (5): 473- 491
doi: 10.12989/scs.2013.14.5.473
[7]   郝婷玥, 曹万林 双钢板混凝土组合剪力墙轴压承载力研究[J]. 工程科学学报, 2017, 39 (11): 1765- 1773
HAO Ting-yue, CAO Wan-lin Study on axial compressive bearing capacity of composite shear wall with double-skin steel plate[J]. Chinese Journal of Engineering, 2017, 39 (11): 1765- 1773
[8]   闫晓京. 核电工程双钢板内嵌混凝土组合墙轴压性能研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.
YAN Xiao-jing. Axial compression performance of steel-concrete-steel sandwich composite wall in nuclear engineering [D]. Harbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013.
[9]   ZHANG K, VARMA A H, MALUSHTE S R, et al Effect of shear connectors on local buckling and composite action in steel concrete composite walls[J]. Nuclear Engineering and Design, 2014, 269 (4): 231- 239
[10]   刘智, 王瑞刚, 赵广生 材料的塑性泊松比 和弹塑性泊松比[J]. 塑性工程学报, 1999, 6 (2): 26- 29
LIU Zhi, WANG Rui-gang, ZHAO Guang-sheng Plastic Poisson's ratio and elasto-plastic Poisson's ratio of materials[J]. Journal of Plasticity Engineering, 1999, 6 (2): 26- 29
[11]   过镇海. 混凝土的强度和变形: 试验基础和本构关系[M]. 北京: 清华大学出版社, 1997.
[12]   CHOI B J, KANG C K, PARK H Y Strength and behavior of steel plate–concrete wall structures using ordinary and eco-oriented cement concrete under axial compression[J]. Thin-Walled Structures, 2014, 84 (5): 313- 324
[13]   HEN W F, HAN D J. Plasticity for structural engineers [M]. New York: Springer, 1988.
[14]   THOMAS T C, MO Y L. Unified theory of concrete [M]. Florida: CRC Press, 2010.
[15]   张有佳, 李小军, 贺秋梅, 等 钢板混凝土组合墙体局部稳定性轴压试验研究[J]. 土木工程学报, 2016, 49 (1): 62- 68
ZHANG You-jia, LI Xiao-jun, HE Qiu-mei, et al Experimental study on local stability of composite walls with steel plates and filled concrete under concentric loads[J]. China Civil Engineering Journal, 2016, 49 (1): 62- 68
[16]   FUKUMOTO T, KATO B, SATO K, et al. Concrete filled steel bearing walls [C] // 1987 IABSE Symposium. Paris: IABSE, 1987, 55: 468–472.
[17]   刘阳冰, 杨庆年, 刘晶波, 等 双钢板-混凝土剪力墙轴心受压性能试验研究[J]. 四川大学学报: 工程科学版, 2016, 48 (2): 83- 90
LIU Yang-bing, YANG Qing-nian, LIU Jing-bo, et al Experimental research on axial compressive behavior of shear wall with double steel plates and filled concrete[J]. Journal of Sichuan University: Engineering Science Edition, 2016, 48 (2): 83- 90
[1] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of ZheJiang University (Engineering Science), 2017, 51(5): 904-913.