Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (3): 463-469    DOI: 10.3785/j.issn.1008-973X.2019.03.007
Mechanical Engineering     
Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube
Xiao-teng MIN(),Zhi-guo TANG*(),Qin GAO,An-qi SONG,Shou-cheng WANG
School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
Download: HTML     PDF(1070KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A liquid cooling battery module based on mini-channel wavy tube was established considering the heat dissipation performance of cylindrical power batteries. Three-dimensional transient analysis of the heat dissipation performance was conducted for the proposed battery module by using electrochemical thermal model, and the channel quantity and contact angle of the wavy tube were changed to optimize the liquid cooling configurations. The 10-channel wavy tube shows apparent advantages; an increase in contact angle positively affects the heat dissipation efficiency of the liquid cooling configurations and improves the temperature field homogeneity of the battery module. When the battery module was discharged with 1 C rate at 35 °C, the maximum temperature and local temperature difference on the surfaces of the battery module can be respectively controlled below 40 °C and 5 °C by using the 10-channel wavy tube with a contact angle greater than 40° even at a low mass flow rate of 4×10?3 kg/s. Experiments under optimized conditions were performed to validate the heat transfer performance of the battery module. The simulated results are consistent with the experimental values, thereby corroborating the heat dissipation effectiveness of the mini-channel wavy tube. The simulated results can provide specific reference values for the thermal management of cylindrical power battery modules.



Key wordscylindrical power battery      mini-channel wavy tube      liquid cooling      transient simulation      configuration optimization     
Received: 29 January 2018      Published: 04 March 2019
CLC:  TK 124  
Corresponding Authors: Zhi-guo TANG     E-mail: minxiaoteng@mail.hfut.edu.cn;tzhiguo@hfut.edu.cn
Cite this article:

Xiao-teng MIN,Zhi-guo TANG,Qin GAO,An-qi SONG,Shou-cheng WANG. Heat dissipation characteristic of liquid cooling cylindrical battery module based on mini-channel wavy tube. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 463-469.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.03.007     OR     http://www.zjujournals.com/eng/Y2019/V53/I3/463


基于微小通道波形扁管的圆柱电池液冷模组散热特性

针对圆柱动力电池的散热特点,建立一种基于微小通道波形扁管的液冷电池模组. 采用电化学热模型对该模组的散热特性进行三维瞬态分析,通过改变波形扁管的通道数和接触角对液冷结构进行优化. 10通道的波形扁管散热优势明显,增大波形扁管的接触角可以提升液冷结构的散热效率并改善电池组温度分布均匀性. 当电池模组在35 °C环境下以1 C倍率放电时,即使质量流量低至4×10?3 kg/s,使用接触角大于40°的10通道波形扁管可将电池组表面最高温度控制在40 °C以下,同时将温差控制在5 °C以内. 在优化工况下进行实验以验证该电池模组的换热性能. 仿真结果与实验值基本一致,这验证了微小通道波形扁管的散热有效性;仿真结果可为圆柱动力电池的热管理提供参考.


关键词: 圆柱动力电池,  微小通道波形扁管,  液冷,  瞬态模拟,  结构优化 
Fig.1 Structure diagram of 18650 lithium-ion battery module
Fig.2 Structure diagram of mini-channel wavy tube
参数 ρ/(kg·m?3 c/(J·kg?1·K?1 k/(W·m?1·K?1 μ/(g·m?1·s?1
电池 2 478 806 kr=1.30, kz=14.15 ?
波形扁管 2 719 871 202.4 ?
液冷工质 1 066.3 3 338 0.391 2.56
Tab.1 Thermo-physical parameters used in this work
Fig.3 Maximum temperature on battery surfaces with different grid numbers
Fig.4 Variation of maximum temperature on battery surfaces and temperature difference in battery module with different channel quantities
Fig.5 Variation of maximum temperature of battery surfaces and temperature difference in battery module with different contact angles
Fig.6 Temperature distribution on axial plane of monitored batteries
Fig.7 Locations of monitored batteries and thermocouples
Fig.8 Comparison between experimental and simulated results for variation of battery surface temperatures under representative cooling condition
[1]   SUI Z, WANG Z Technical and economic analysis of pure-electric vehicles based on the life-cycle cost theory[J]. International Conference on Business Management and Electronic Information, 2011, 1: 125- 129
[2]   袁世斐, 吴红杰, 殷承良 锂离子电池简化电化学模型: 浓度分布估计[J]. 浙江大学学报: 工学版, 2017, 51 (3): 478- 486
YUAN Shi-fei, WU Hong-jie, YIN Cheng-liang Simplified electrochemical model for Li-ion battery: lithium concentration estimation[J]. Journal of Zhejiang University: Engineering Science, 2017, 51 (3): 478- 486
[3]   SCROSATI B, HASSOUN J, SUN Y Lithium-ion batteries. A look into the future[J]. Energy and Environmental Science, 2011, 4 (9): 3287- 3295
[4]   AIFANTIS K, HACKNEY S, KUMAR R High energy density lithium batteries: materials, engineering, applications[J]. Wiley-VCH, 2010, 53- 80
[5]   PANCHAL S, DINCER I, AGELIN-CHAAB M, et al Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery[J]. International Journal of Thermal Sciences, 2016, 99: 204- 212
[6]   FENG X, LU L, OUYANG M, et al A 3D thermal runaway propagation model for a large format lithium-ion battery module[J]. Energy, 2016, 115 (1): 194- 208
[7]   WU B, YUFIT V, MARINESCU M, et al Coupled thermal-electrochemical modelling of uneven heat generation in lithium-ion battery packs[J]. Journal of Power Sources, 2013, 243 (6): 544- 554
[8]   GOGOANA R Internal resistance variances in lithium-ion batteries and implications in manufacturing[J]. Massachusetts Institute of Technology, 2012,
[9]   LIU R, CHEN J, XUN J, et al Numerical investigation of thermal behaviors in lithium-ion battery stack discharge[J]. Applied Energy, 2014, 132 (11): 288- 297
[10]   PESARAN A Battery thermal models for hybrid vehicle simulations[J]. Journal of Power Sources, 2002, 110 (2): 377- 382
[11]   YE Y, SAW L, SHI Y, et al Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86: 281- 291
[12]   CHEN D, JIANG J, KIM G, et al Comparison of different cooling methods for lithium-ion battery cells[J]. Applied Thermal Engineering, 2016, 94: 846- 854
[13]   JARRETT A, KIM I Design optimization of electric vehicle battery cooling plates for thermal performance[J]. Journal of Power Sources, 2011, 196 (23): 10359- 10368
[14]   JARRETT A, KIM I Influence of operating conditions on the optimum design of electric vehicle battery cooling plates[J]. Journal of Power Sources, 2014, 245 (1): 644- 655
[15]   JIN L, LEE P, KONG X, et al Ultra-thin minichannel LCP for EV battery thermal management[J]. Applied Energy, 2014, 113 (1): 1786- 1794
[16]   PENDERGAST D, DEMAURO E, FLETCHER M, et al A rechargeable lithium-ion battery module for underwater use[J]. Journal of Power Sources, 2011, 196 (2): 793- 800
[17]   ZHAO J, RAO Z, LI Y Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery[J]. Energy Conversion and Management, 2015, 103: 157- 165
[18]   BASU S, HARIHARAN K, KOLAKE S, et al Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system[J]. Applied Energy, 2016, 181: 1- 13
[19]   RAO Z, QIAN Z, KUANG Y, et al Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface[J]. Applied Thermal Engineering, 2017, 123: 1514- 1522
[20]   HERMANN W. Liquid cooling manifold with multi-function thermal interface: US20100104938A1[P]. 2012-09-11
[21]   BERNARDI D, PAWLIKOWSKI E, NEWMAN J A general energy-balance for battery systems[J]. Journal of the Electrochemical Society, 1985, 132 (1):
[22]   ZHANG Z, JIA L, ZHAO N, et al Thermal modeling and cooling analysis of high-power lithium-ion cells[J]. Journal of Thermal Sciences, 2011, 20 (6): 570- 575
[23]   HE F, LI X, MA L Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells[J]. International Journal of Heat and Mass Transfer, 2014, 72 (9): 622- 629
[24]   MAHAMUD R, PARK C Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity[J]. Journal of Power Sources, 2011, 196 (13): 5685- 5696
[25]   WU M, LIU K, WANG Y, et al Heat dissipation design for lithium-ion batteries[J]. Journal of Power Sources, 2002, 109 (1): 160- 166
[26]   ZHU C, LI X, SONG L, et al Development of a theoretically based thermal model for lithium-ion battery pack[J]. Journal of Power Sources, 2013, 223 (1): 155- 164
[1] Wei-an LIN,Chuan-xiang ZHENG,Jian-qun JIANG,Dao-sheng LING,Yun-min CHEN. Temperature control test of scaled model of high capacity hypergravity centrifuge[J]. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1587-1592.
[2] WANG Tao, WANG Liang, LIN Gui ping, BAI Li zhan, LIU Xiang yang, BU Xue qin, XIE Guang hui. Experimental study on performance of liquid cooling garment with application of titanium dioxide nanofluids[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(4): 681-690.