Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (3): 407-419    DOI: 10.3785/j.issn.1008-973X.2019.03.001
Mechanical Engineering     
3D bioprinting: from structure to function
Yong HE(),Qing GAO,An LIU,Miao SUN,Jian-zhong FU
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download: HTML     PDF(1365KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Review the background of 3D bioprinting systematically, provide the research scope of 3D bioprinting, and summarize the development of 3D bioprinting. This review focuses on the 3D bioprinting of manipulating cells, and the development of 3D bioprinting was prospected combined with the research and thought of our research group in recent years. To better integrate clinical needs to realize transition from bionic manufacturing of organizational structure to functional reconstruction is the key to the breakthrough of 3D bioprinting in the future.



Key words3D bioprinting      cell printing      bioink      bioprinter      tissue engineering      bionic manufacturing     
Received: 19 June 2018      Published: 04 March 2019
CLC:  R 318.08  
Cite this article:

Yong HE,Qing GAO,An LIU,Miao SUN,Jian-zhong FU. 3D bioprinting: from structure to function. Journal of ZheJiang University (Engineering Science), 2019, 53(3): 407-419.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.03.001     OR     http://www.zjujournals.com/eng/Y2019/V53/I3/407


生物3D打印——从形似到神似

系统回顾生物3D打印的提出背景,给出生物3D打印的研究范围,梳理生物3D打印的发展历程. 重点聚焦于回顾操纵细胞的生物3D打印研究,并结合课题组近年来的研究及思考,对生物3D打印的发展进行展望. 更好地结合临床需求,实现从组织结构的仿生制造过渡到功能化的再造是生物3D打印未来取得突破的关键.


关键词: 生物3D打印,  细胞打印,  生物墨水,  生物打印机,  组织工程,  仿生制造 
Fig.1 Schematic diagram of 3D bioprinting
Fig.2 Schematic diagram of inkjet-based 3D bioprinting
Fig.3 Schematic diagram of laser direct writing 3D bioprinting
Fig.4 Schematic diagram of extrusion-based 3D bioprinting
Fig.5 Schematic diagram of photocuring-based 3D bioprinting with digital micro-mirror device (DMD)
Fig.6 Typical composition of extrusion-based 3D bioprinter
Fig.7 Commercialized 3D bioprinter
Fig.8 3D bioprinter (EFL-BP) developed by our research group
Fig.9 Original printing process designed by our research group
Fig.10 3D bioprinting of cartilage tissues
Fig.11 3D bioprinting of skin
Fig.12 3D bioprinting of vascular structures
Fig.13 3D bioprinting of tumour model
Fig.14 3D bioprinting of complex tissues
[1]   BASSOLI E, GATTO A, IULIANO L, et al 3D printing technique applied to rapid casting[J]. Rapid Prototyping Journal, 2007, 13 (3): 148- 155
doi: 10.1108/13552540710750898
[2]   VENTOLA CL Medical applications for 3D printing: current and projected uses[J]. Pharmacy and Therapeutics, 2014, 39 (10): 704
[3]   LIU Y, GAO Q, DU S, et al Fabrication of cerebral aneurysm simulator with a desktop 3D printer[J]. Scientific Reports, 2017, 7: 44301
doi: 10.1038/srep44301
[4]   HE Y, XUE G, FU J Fabrication of low cost soft tissue prostheses with the desktop 3D printer[J]. Scientific Reports, 2014, 4: 6973
[5]   邵惠锋, 贺永, 傅建中 增材制造可降解人工骨的研究进展: 从外形定制到性能定制[J]. 浙江大学学报: 工学版, 2018, 52 (6): 1035- 1057
SHAO Hui-feng, HE Yong, FU Jian-zhong Research advance of degradable artificial bone with additive manufacturing: customization from geometric shape to property[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (6): 1035- 1057
[6]   SHAO H, YANG X, HE Y, et al Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior[J]. Biofabrication, 2015, 7 (3): 035010
doi: 10.1088/1758-5090/7/3/035010
[7]   SHAO H, HE Y, FU J, et al 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation[J]. Journal of the European Ceramic Society, 2016, 36 (6): 1495- 1503
doi: 10.1016/j.jeurceramsoc.2016.01.010
[8]   SHAO H, KE X, LIU A, et al Bone regeneration in 3D printing bioactive ceramic scaffolds with improved tissue/material interface pore architecture in thin-wall bone defect[J]. Biofabrication, 2017, 9 (2): 025003
doi: 10.1088/1758-5090/aa663c
[9]   董鹤, 方玉婷, 王丹, 等 国内外器官捐献现状与思考[J]. 护理学报, 2017, 24 (11): 23- 26
DONG He, FANG Yu-ting, WANG Dan, et al Current situation and thinking of organ donation at home and abroad[J]. Journal of Nursing (China), 2017, 24 (11): 23- 26
[10]   杨颖, 黄海, 邱鸿钟 我国公民逝世后器官捐献意愿调查及影响因素研究[J]. 中国医院, 2014, 18 (3): 18- 19
YANG Ying, HUANG Hai, QIU Hong-zhong Study on the willingness and influence factors of organ donation after death of citizens in China[J]. Chinese Hospitals, 2014, 18 (3): 18- 19
doi: 10.3969/j.issn.1671-0592.2014.03.009
[11]   OZBOLAT I T, YU Y Bioprinting toward organ fabrication: challenges and future trends[J]. IEEE Transactions on Biomedical Engineering, 2013, 60 (3): 691- 699
doi: 10.1109/TBME.2013.2243912
[12]   MANDRYCKY C, WANG Z, KIM K, et al 3D bioprinting for engineering complex tissues[J]. Biotechnology Advances, 2016, 34 (4): 422- 434
doi: 10.1016/j.biotechadv.2015.12.011
[13]   HE Y, YANG F F, ZHAO H M, et al Research on the printability of hydrogels in 3D bioprinting[J]. Scientific Reports, 2016, 6: 29977
doi: 10.1038/srep29977
[14]   甲基丙烯酸酐化水凝胶(GelMA, EFL-GM系列)[R/OL].[2018-08-08]. http://www.imrsz.com/page-31-11.html.
[15]   TUAN R Adult mesenchymal stem cells and cell-based tissue engineering[J]. Arthritis Research and Therapy, 2003, 5 (1): 32- 45
doi: 10.1186/ar614
[16]   XU T, GREGORY C Viability and electrophysiology of neural cell structures generated by the inkjet printing method[J]. Biomaterials, 2006, 27 (19): 3580- 8
[17]   XU C, ZHANG M, HUANG Y, et al Study of droplet formation process during drop-on-demand inkjetting of living cell-laden bioink[J]. Langmuir, 2014, 30 (30): 9130- 9138
doi: 10.1021/la501430x
[18]   XU C, CHAI W, HUANG Y, et al Scaffold-free inkjet printing of three-dimensional zigzag cellular tubes[J]. Biotechnology and Bioengineering, 2012, 109 (12): 3152- 3160
[19]   CUI X, BOLAND T Human microvasculature fabrication using thermal inkjet printing technology[J]. Biomaterials, 2009, 30 (31): 6221- 6227
doi: 10.1016/j.biomaterials.2009.07.056
[20]   KIM J D, CHOI J S, KIM B S, et al Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates[J]. Polymer, 2010, 51 (10): 2147- 2154
doi: 10.1016/j.polymer.2010.03.038
[21]   CUI X, DEAN D, RUGGERI Z Cell damage evaluation of thermal inkjet printed Chinese hamster ovary cells[J]. Biotechnology and Bioengineering, 2010, 106 (6): 963- 969
doi: 10.1002/bit.22762
[22]   PIQUE A, CHRISEY D B, AUYEUNG R C Y, et al A novel laser transfer process for direct writing of electronic and sensor materials[J]. Applied Physics A, 1999, 69 (1): S279- S284
[23]   ODDE D J, RENN M J Laser‐guided direct writing of living cells[J]. Biotechnology and Bioengineering, 2000, 67 (3): 312- 318
doi: 10.1002/(ISSN)1097-0290
[24]   RINGEISEN B R, KIM H, BARRON J A, et al Laser printing of pluripotent embryonal carcinoma cells[J]. Tissue Engineering, 2004, 10 (3/4): 483- 491
doi: 10.1089/107632704323061843
[25]   SCHIELE N R, CORR D T, HUANG Y, et al Laser-based direct-write techniques for cell printing[J]. Biofabrication, 2010, 2 (3): 032001
doi: 10.1088/1758-5082/2/3/032001
[26]   BARRON J A, WU P, LADOUCEUR H D, et al Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns[J]. Biomedical Microdevices, 2004, 6 (2): 139- 147
doi: 10.1023/B:BMMD.0000031751.67267.9f
[27]   KOCH L, DEIWICK A, SCHLIE S, et al Skin tissue generation by laser cell printing[J]. Biotechnology and bioengineering, 2012, 109 (7): 1855- 1863
doi: 10.1002/bit.v109.7
[28]   BARRON J A, KRIZMAN D B, RINGEISEN B R Laser printing of single cells: statistical analysis, cell viability, and stress[J]. Annals of biomedical engineering, 2005, 33 (2): 121- 130
doi: 10.1007/s10439-005-8971-x
[29]   GRUENE M, PFLAUM M, HESS C, et al Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions[J]. Tissue Engineering Part C: Methods, 2011, 17 (10): 973- 982
doi: 10.1089/ten.tec.2011.0185
[30]   GUILLEMOT F, SOUQUET A, CATROS S, et al High-throughput laser printing of cells and biomaterials for tissue engineering[J]. Acta Biomaterialia, 2010, 6 (7): 2494- 2500
doi: 10.1016/j.actbio.2009.09.029
[31]   LANDERS R, HUBNER U, SCHMELZEISEN R, et al Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering[J]. Biomaterials, 2002, 23 (23): 4437- 4447
doi: 10.1016/S0142-9612(02)00139-4
[32]   OZBOLAT I T, HOSPODIUK M Current advances and future perspectives in extrusion-based bioprinting[J]. Biomaterials, 2016, 76: 321- 343
doi: 10.1016/j.biomaterials.2015.10.076
[33]   COLOSI C, SHIN S R, MANOHARAN V, et al Microfluidic bioprinting of heterogeneous 3D tissue constructs using low-viscosity bioink[J]. Advanced Materials, 2016, 28 (4): 677- 684
doi: 10.1002/adma.201503310
[34]   TRACHTENBERG J E, PLACONE J K, SMITH B T, et al Extrusion-based 3D printing of poly (propylene fumarate) in a full-factorial design[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1771- 1780
doi: 10.1021/acsbiomaterials.6b00026
[35]   FAULKNER-JONES A, FYFE C, CORNELISSEN D J, et al Bioprinting of human pluripotent stem cells and their directed differentiation into hepatocyte-like cells for the generation of mini-livers in 3D[J]. Biofabrication, 2015, 7 (4): 044102
doi: 10.1088/1758-5090/7/4/044102
[36]   HO C T, LIN R Z, CHEN R J, et al Liver-cell patterning lab chip: mimicking the morphology of liver lobule tissue[J]. Lab on a Chip, 2013, 13 (18): 3578- 3587
doi: 10.1039/c3lc50402f
[37]   GAUVIN R, CHEN Y C, LEE J W, et al Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography[J]. Biomaterials, 2012, 33 (15): 3824- 3834
doi: 10.1016/j.biomaterials.2012.01.048
[38]   WANG Z, ABDULLA R, PARKER B, et al A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks[J]. Biofabrication, 2015, 7 (4): 045009
doi: 10.1088/1758-5090/7/4/045009
[39]   ZHANG A P, QU X, SOMAN P, et al Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography[J]. Advanced Materials, 2012, 24 (31): 4266- 4270
doi: 10.1002/adma.v24.31
[40]   LIN H, ZHANG D, ALEXANDER P G, et al Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture[J]. Biomaterials, 2013, 34 (2): 331- 339
doi: 10.1016/j.biomaterials.2012.09.048
[41]   HRIBAR K C, SOMAN P, WARNER J, et al Light-assisted direct-write of 3D functional biomaterials[J]. Lab on a Chip, 2014, 14 (2): 268- 275
doi: 10.1039/C3LC50634G
[42]   THOMAS D J, JESSOP Z M, WHITAKER L S. 3D bioprinting for reconstructive surgery: techniques and applications [M]. Combridge: Woodhead Publishing, 2017.
[43]   生物3D打印机(EFL-BP系列)[R].[2018-08-08]. http://www.imrsz.com/page-31-13.html.
[44]   ZHAO H, CHEN Y, SHAO L, et al Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle[J]. Small, 2018, 14 (39): 1802630
doi: 10.1002/smll.v14.39
[45]   SHAO L, GAO Q, ZHAO H, et al Fiber-based mini tissue with morphology-controllable GelMA microfibers[J]. Small, 2018, 1802187
doi: 10.1002/smll.201802187
[46]   TATMAN P D, GERULL W, SWEENEY-EASTER S, et al Multiscale biofabrication of articular cartilage: bioinspired and biomimetic approaches[J]. Tissue Engineering Part B: Reviews, 2015, 21 (6): 543- 559
doi: 10.1089/ten.teb.2015.0142
[47]   KUNDU J, ShiM J H, JANG J, et al An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering[J]. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9 (11): 1286- 1297
doi: 10.1002/term.v9.11
[48]   YOU F, WU X, ZHU N, et al 3D printing of porous cell-laden hydrogel constructs for potential applications in cartilage tissue engineering[J]. ACS Biomaterials Science and Engineering, 2016, 2 (7): 1200- 1210
doi: 10.1021/acsbiomaterials.6b00258
[49]   CUI X, BREITENKAMP K, FINN M G, et al Direct human cartilage repair using three-dimensional bioprinting technology[J]. Tissue Engineering Part A, 2012, 18 (11/12): 1304- 1312
doi: 10.1089/ten.tea.2011.0543
[50]   NARAYANAN L K, HUEBNER P, FISHER M B, et al 3D-bioprinting of polylactic acid (PLA) nanofiber-alginate hydrogel bioink containing human adipose-derived stem cells[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1732- 1742
doi: 10.1021/acsbiomaterials.6b00196
[51]   RHEE S, PUETZER J L, MASON B N, et al 3D bioprinting of spatially heterogeneous collagen constructs for cartilage tissue engineering[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1800- 1805
doi: 10.1021/acsbiomaterials.6b00288
[52]   ARMSTRONG J P K, BURKE M, CARTER B M, et al 3D bioprinting using a templated porous bioink[J]. Advanced Healthcare Materials, 2016, 5 (14): 1724- 1730
doi: 10.1002/adhm.201600022
[53]   KANG H W, LEE S J, KO I K, et al A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nature Biotechnology, 2016, 34 (3): 312
doi: 10.1038/nbt.3413
[54]   MARKSTEDT K, MANTAS A, TOURNIER I, et al 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications[J]. Biomacromolecules, 2015, 16 (5): 1489- 1496
doi: 10.1021/acs.biomac.5b00188
[55]   LEE J S, HONG J M, JUNG J W, et al. 3D printing of composite tissue with complex shape applied to ear regeneration[J]. Biofabrication, 2014, 6(2): 024103.
[56]   MANNOOR M S, JIANG Z, JAMES T, et al 3D printed bionic ears[J]. Nano Letters, 2013, 13 (6): 2634- 2639
doi: 10.1021/nl4007744
[57]   LEE V, SINGH G, TRASATTI J P, et al Design and fabrication of human skin by three-dimensional bioprinting[J]. Tissue Engineering Part C: Methods, 2013, 20 (6): 473- 484
[58]   POURCHET L J, THEPOT A, ALBOUY M, et al Human skin 3D bioprinting using scaffold-free approach[J]. Advanced healthcare materials, 2017, 6 (4): 1601101
doi: 10.1002/adhm.201601101
[59]   SKARDAL A, MACK D, KAPETANOVIC E, et al Bioprinted amniotic fluid‐derived stem cells accelerate healing of large skin wounds[J]. Stem Cells Translational Medicine, 2012, 1 (11): 792- 802
doi: 10.5966/sctm.2012-0088
[60]   MICHAEL S, SORG H, PECK C T, et al Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice[J]. PLOS ONE, 2013, 8 (3): e57741
doi: 10.1371/journal.pone.0057741
[61]   VELASQUILLO C, GALUE E A, RODRIQUEZ L, et al Skin 3D bioprinting. Applications in cosmetology[J]. Journal of Cosmetics, Dermatological Sciences and Applications, 2013, 3 (1): 85
doi: 10.4236/jcdsa.2013.31A012
[62]   LEE W, DEBASITIS J C, LEE V K, et al Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication[J]. Biomaterials, 2009, 30 (8): 1587- 1595
doi: 10.1016/j.biomaterials.2008.12.009
[63]   CHRISTENSEN K, XU C, CHAI W, et al. Freeform inkjet printing of cellular structures with bifurcations[J]. Biotechnology and Bioengineering, 2015, 112(5): 1047-1055.
[64]   XIONG R, ZHANG Z, CHAI W, et al Freeform drop-on-demand laser printing of 3D alginate and cellular constructs[J]. Biofabrication, 2015, 7 (4): 045011
doi: 10.1088/1758-5090/7/4/045011
[65]   TABRIZ A G, HERMIDA M A, LESLIE N R, et al Three-dimensional bioprinting of complex cell laden alginate hydrogel structures[J]. Biofabrication, 2015, 7 (4): 045012
doi: 10.1088/1758-5090/7/4/045012
[66]   ZHU W, QU X, ZHU J, et al. Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture[J]. Biomaterials, 2017, 124: 106-115.
[67]   MILLER J S, STEVENS K R, YANG M T, et al Rapid casting of patterned vascular networks for perfusable engineered 3D tissues[J]. Nature Materials, 2012, 11 (9): 768
doi: 10.1038/nmat3357
[68]   LEE V K, KIM D Y, NGO H, et al. Creating perfused functional vascular channels using 3D bio-printing technology[J]. Biomaterials, 2014, 35(28): 8092-8102.
[69]   BERTASSONI L E, CARDOSO J C, MANOHARAN V, et al Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels[J]. Biofabrication, 2014, 6 (2): 024105
doi: 10.1088/1758-5082/6/2/024105
[70]   KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, et al Three-dimensional bioprinting of thick vascularized tissues[J]. Proceedings of the National Academy of Sciences, 2016, 113 (12): 3179- 3184
doi: 10.1073/pnas.1521342113
[71]   GAO Q, HE Y, FU J, et al Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery[J]. Biomaterials, 2015, 61: 203- 215
doi: 10.1016/j.biomaterials.2015.05.031
[72]   GAO Q, LIU Z, LIN Z, et al 3D bioprinting of vessel-like structures with multilevel fluidic channels[J]. ACS biomaterials science and engineering, 2017, 3 (3): 399- 408
doi: 10.1021/acsbiomaterials.6b00643
[73]   GROLMAN J M, ZHANG D, SMITH A M, et al Rapid 3D extrusion of synthetic tumor microenvironments[J]. Advanced Materials, 2015, 27 (37): 5512- 5517
doi: 10.1002/adma.201501729
[74]   ZHANG Y S, DUCHAMP M, OKLU R, et al Bioprinting the cancer microenvironment[J]. ACS Biomaterials Science and Engineering, 2016, 2 (10): 1710- 1721
doi: 10.1021/acsbiomaterials.6b00246
[75]   DAI X, MA C, LAN Q, et al 3D bioprinted glioma stem cells for brain tumor model and applications of drug susceptibility[J]. Biofabrication, 2016, 8 (4): 045005
doi: 10.1088/1758-5090/8/4/045005
[76]   LEE V K, DAI G, ZOU H, et al. Generation of 3-D glioblastoma-vascular niche using 3-D bioprinting [C] // 201541st Annual Northeast Biomedical Engineering Conference (NEBEC). Troy: IEEE, 2015: 1-2.
[77]   XU F, CELLI J, RIZVI I, et al A three‐dimensional in vitro ovarian cancer coculture model using a high‐throughput cell patterning platform[J]. Biotechnology journal, 2011, 6 (2): 204- 212
doi: 10.1002/biot.v6.2
[78]   ZHAO Y, YAO R, OUYANG L, et al Three-dimensional printing of Hela cells for cervical tumor model in vitro[J]. Biofabrication, 2014, 6 (3): 035001
doi: 10.1088/1758-5082/6/3/035001
[79]   HOCKADAY L A, KANG K H, COLANGELO N W, et al Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds[J]. Biofabrication, 2012, 4 (3): 035005
doi: 10.1088/1758-5082/4/3/035005
[80]   GOU M, QU X, ZHU W, et al Bio-inspired detoxification using 3D-printed hydrogel nanocomposites[J]. Nature communications, 2014, 5: 3774
doi: 10.1038/ncomms4774
[81]   OUYANG L, YAO R, MAO S, et al Three-dimensional bioprinting of embryonic stem cells directs highly uniform embryoid body formation[J]. Biofabrication, 2015, 7 (4): 044101
doi: 10.1088/1758-5090/7/4/044101
[82]   TSANG V L, CHEN A A, CHO L M, et al Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels[J]. The FASEB Journal, 2007, 21 (3): 790- 801
doi: 10.1096/fj.06-7117com
[83]   LEWIS P L, SHAH R N 3D printing for liver tissue engineering: current approaches and future challenges[J]. Current Transplantation Reports, 2016, 3 (1): 100- 108
doi: 10.1007/s40472-016-0084-y
[84]   DUAN B, HOCKADAY L A, KANG K H, et al 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels[J]. Journal of biomedical materials research Part A, 2013, 101 (5): 1255- 1264
[85]   HINTON T J, JALLERAT Q, PALCHESKO R N, et al Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels[J]. Science advances, 2015, 1 (9): e1500758
doi: 10.1126/sciadv.1500758
[86]   MA X, QU X, ZHU W, et al Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proceedings of the National Academy of Sciences, 2016, 113 (8): 2206- 2211
doi: 10.1073/pnas.1524510113
[87]   LOZANO R, STEVENS L, THOMPSON B C, et al 3D printing of layered brain-like structures using peptide modified gellan gum substrates[J]. Biomaterials, 2015, 67: 264- 273
doi: 10.1016/j.biomaterials.2015.07.022
[1] WEI Xin-wei, GAO Qing, SU Kai-qi, QIN Zhen, PAN Yu-xiang, HE Yong, WANG Ping. Three-dimensional cardiomyocyte-based biosensor with tissue engineering scaffold[J]. Journal of ZheJiang University (Engineering Science), 2018, 52(7): 1415-1422.