Please wait a minute...
Journal of ZheJiang University (Engineering Science)  2019, Vol. 53 Issue (2): 268-274    DOI: 10.3785/j.issn.1008-973X.2019.02.009
Mechanical Engineering     
Body pressure distribution characteristics in different sampling densities
Chuan ZHAO1(),Sui-huai YU1,*(),Lei WANG2,Wen-hua LI1
1. Shaanxi Engineering Laboratory for Industrial Design, Northwestern Polytechnical University, Xi'an 710072, China
2. China Aviation Industry First Aircraft Design Institute, Xi'an 710089, China
Download: HTML     PDF(794KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The raw data with sampling density of 32×32 was spatially filtered to eliminate noise, in order to enhance the continuity of data distribution between independent sensors. Then sampling density of data was decreased to 24×24, 16×16, and 8×8, respectively. Four common features (mean pressure, maximum pressure, mean pressure gradient, and maximum pressure gradient) were calculated at each sampling density. The one-way ANOVA analysis showed that the differences of mean values between 32×32 sampling density and 24×24 as well as 16×16 sampling densities were small (1.1 mmHg, 2.6 mmHg), but the difference of mean value between 32×32 and 8×8 sampling densities was big (9.0 mmHg). Spearman correlation analysis revealed that the four common features of 32×32 sampling density had high correlation with that of 24×24, 16×16, and 8×8 sampling densities (P<0.05). The highest was the peak pressure correlation (0.99,P<0.05) between the 32 ×32 and 24 ×24 sampling densities, and the lowest was the mean pressure gradient correlation (0.55,P<0.05) between the 32×32 and 8×8 sampling densities. The test results showed that the pressure mat with the sampling density of 24×24 and 16×16 can provide accurate body pressure distribution characteristics.



Key wordspressure mapping mat      riding comfort      body pressure distribution      plane seat      data reduction     
Received: 24 January 2018      Published: 21 February 2019
CLC:  TB 18  
Corresponding Authors: Sui-huai YU     E-mail: zhaochuancow@gmail.com;ysuihuai@vip.sina.com
Cite this article:

Chuan ZHAO,Sui-huai YU,Lei WANG,Wen-hua LI. Body pressure distribution characteristics in different sampling densities. Journal of ZheJiang University (Engineering Science), 2019, 53(2): 268-274.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2019.02.009     OR     http://www.zjujournals.com/eng/Y2019/V53/I2/268


不同采样密度下体压分布特征

对压力座垫原始数据(采样密度为32×32)进行空域滤波处理剔除噪声,增强独立传感器之间数据分布的连续性. 将体压分布采样密度降至24×24、16×16、8×8,提取不同采样密度下的平均压力、峰值压力、平均压力梯度和峰值压力梯度进行分析. 单因素方差分析结果表明,32×32采样密度与24×24、16×16采样密度下的特征均值之间的差异较小(1.1、2.6 mmHg),与8×8采样密度下的特征均值之间的差异较大(9.0 mmHg). 斯皮尔曼相关性分析结果表明,32×32与24×24、16×16、8×8采样密度下的平均压力、峰值压力、平均压力梯度和峰值压力梯度具有较高的相关性(P<0.05). 其中相关性最高的为与24×24采样密度下的峰值压力(0.99,P<0.05),相关性最低的为与8×8采样密度下的平均压力梯度(0.55,P<0.05). 试验结果表明采样密度为24×24和16×16的压力座垫可以提供精确的体压分布特征.


关键词: 压力座垫,  乘坐舒适性,  体压分布,  飞机座椅,  数据简化 
性别 男(N=5) 女(N=5)
身高/
cm
体重/
kg
体质指数/
BMI
身高/
cm
体重/
kg
体质指数/
BMI
平均值 176.2 77.5 24.8 163.8 55.0 21.0
最小值 167.0 72.5 21.2 155.0 47.0 18.4
最大值 185.0 99.0 28.9 169.0 65.0 24.5
标准差 7.34 13.10 2.90 4.91 5.90 2.10
Tab.1 Anthropometric dimensions of volunteers included in study
Fig.1 Aircraft cabin simulation scenario and experiment process
Fig.2 Pressure mat sensor distribution map
Fig.3 Spatial filtering processing results of pressure mat data
Fig.4 Pressure mapping image of body pressure distribution data
座椅间距/cm 32×32 24×24
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
71.12 32.13 25.72 10.11 8.21 31.93 27.65 12.47 9.99
76.20 32.23 27.65 10.38 7.48 32.46 25.63 12.48 9.15
81.28 35.62 28.47 10.54 8.21 35.97 28.14 14.20 9.87
86.36 36.26 28.41 11.69 8.34 36.16 28.40 14.23 10.13
91.44 37.33 29.87 12.36 8.48 37.68 28.89 15.00 10.29
座椅间距/cm 16×16 8×8
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
pmax/
mmHg
pmean/
mmHg
Gmax/
(mmHg·m?1)
Gmean/
(mmHg·m?1)
71.12 32.72 28.39 15.98 12.70 34.78 29.67 24.41 19.60
76.20 34.12 26.24 16.51 11.94 38.02 27.07 26.44 18.79
81.28 38.48 28.96 19.35 12.81 40.85 30.57 28.95 20.31
86.36 39.09 29.41 19.20 13.17 41.12 30.65 29.21 21.56
91.44 39.16 30.13 20.08 13.46 43.76 31.99 29.67 21.57
Tab.2 Pressure distribution parameters
对照组
采样密度
试验组
采样密度
pmean均值差 P 95%置信区间
下限 上限
注:1) 与对照组比较,P<0.05
32×32 8×8 ?9.01) 0.03 ?17.18 ?0.78
32×32 16×16 ?2.6 0.66 ?11.78 4.63
32×32 24×24 ?1.1 0.99 ?9.26 7.14
Tab.3 Results of one-way ANOVA of average pressure at different sampling intensities
32×32体压分布采样密度
对应特征值
24×24 16×16 8×8
pmax pmean Gmax Gmean pmax pmean Gmax Gmean pmax pmean Gmax Gmean
注:与对照组比较,均有P<0.05
pmax 0.99 0.88 0.76 0.84 0.94 0.88 0.70 0.81 0.85 0.88 0.78 0.76
pmean 0.85 0.99 0.55 0.94 0.76 0.98 0.48 0.89 0.61 0.96 0.60 0.86
Gmax 0.78 0.55 0.99 0.59 0.78 0.56 0.94 0.58 0.74 0.56 0.88 0.55
Gmean 0.84 0.96 0.61 0.99 0.76 0.94 0.57 0.96 0.63 0.92 0.68 0.92
Tab.4 Spearman correlation analysis results of pressure distribution
[1]   张毅, 王和平 民用客机总体方案评价准则研究[J]. 西北工业大学学报, 2006, 24 (6): 791- 794
ZHANG Yi, WANG He-ping Some suggesion evalution preliminary overall design of chinese passenger aircraft[J]. Journal of Northwestern Polytechnical University, 2006, 24 (6): 791- 794
doi: 10.3969/j.issn.1000-2758.2006.06.026
[2]   CILOGLU H, ALZIADEH M, MOHANY A, et al Assessment of the whole body vibration exposure and the dynamic seat comfort in passenger aircraft[J]. International Journal of Industrial Ergonomics, 2015, 45 (7): 116- 123
[3]   RICHARDS L G, JACOBSON I D, KUHLTHAU A R What the passenger contributes to passenger comfort[J]. Applied Ergonomics, 1978, 9 (3): 137- 142
doi: 10.1016/0003-6870(78)90003-0
[4]   VINK P. Aircraft interior comfort and design [M]. Boca Raton: CRC Press, 2011.
[5]   铃木浩明, 管永利 列车舒适度的评价[J]. 国外铁道车辆, 1999, (2): 26- 32
LINGMU hao-ming, GUAN Yong-li The evaluation of trian comfort[J]. Foreign Rolling Stock, 1999, (2): 26- 32
[6]   马佳, 柯艺杰, 苏强, 等 汽车座椅舒适度人工智能评价方法研究[J]. 机械科学与技术, 2011, 30 (3): 419- 422
MA Jia, KE Yi-jie, SU qiang, et al An automobile seat comfort evalution method based on artificial intelligence[J]. Mechanical Science and Technology for Aerospace Engineering, 2011, 30 (3): 419- 422
[7]   LAI Y H, SUE M W, GUO L Y A novel evaluation platform for the evaluation of anti-ulcers mattress[J]. Gerontechnology, 2014, 13 (2): 232
[8]   ANDRADE Y N. An ergonomic evaluation of aircraft pilot seats [D]. Daytona Beach: Embry Riddle Aeronautical University, 2013.
[9]   CIACCIA F R D A S, SZNELWAR L I An approach to aircraft seat comfort using interface pressure mapping[J]. Work, 2012, 41 (Suppl. 1): 240- 245
[10]   LI W, YU S, YANG H, et al Effects of long-duration sitting with limited space on discomfort, body flexibility, and surface pressure[J]. International Journal of Industrial Ergonomics, 2017, 58: 12- 24
doi: 10.1016/j.ergon.2017.01.002
[11]   STINSON M D, PORTER-ARMSTRONG A, EAKIN P Seat-interface pressure: a pilot study of the relationship to gender, body mass index, and seating position[J]. Archives of Physical Medicine and Rehabilitation, 2003, 84 (3): 405- 409
doi: 10.1053/apmr.2003.50011
[12]   VOS G A, CONGLETON J J, MOORE J S, et al Postural versus chair design impacts upon interface pressure[J]. Applied Ergonomics, 2006, 37 (5): 619- 628
doi: 10.1016/j.apergo.2005.09.002
[13]   KOLICH M, SEAL N, TABOUN S Automobile seat comfort prediction: statistical model vs artificial neural network[J]. Applied Ergonomics, 2004, 35 (3): 275- 284
doi: 10.1016/j.apergo.2004.01.007
[14]   ZHAO C, YU S, MILLER C, et al. Predicting aircraft seat comfort using an artificial neural network [J/OL]. Human Factors and Ergonomics in Manufacturing and Service Industries. https://onlinelibrary.wiley.com/doi/full/10.1002/hfm.20767.
[15]   TIMM M, SAMUELSSON K Wheelchair seating: a study on the healthy elderly[J]. Scandinavian Journal of Occupational Therapy, 2016, 23 (6): 458- 466
doi: 10.3109/11038128.2016.1152297
[16]   VERBUNT M, BARTNECK C Sensing senses: tactile feedback for the prevention of decubitus ulcers[J]. Applied Psychophysiology and Biofeedback, 2010, 35 (3): 243- 250
doi: 10.1007/s10484-009-9124-z
[17]   WININGER M, CRANE B A Assessment of the minimally sufficient spatial sampling in pressure mapping the wheelchair seating interface[J]. Technology and Disability, 2015, 27 (4): 119- 125
[18]   HEFFERNAN C, FREIVALDS A Optimum pinch grips in the handling of dies[J]. Applied Ergonomics, 2000, 31 (4): 409- 414
doi: 10.1016/S0003-6870(99)00064-2
[19]   KREMSER F, GUENZKOFER F, SEDLMEIER C, et al Aircraft seating comfort: the influence of seat pitch on passengers’ well-being[J]. Work, 2012, 41 (Suppl. 1): 4936- 4942
[1] GONG Yong, ZHANG San yuan, LIU Zhi fang3, SHEN Fa. Eye movement study on color effects to icon visual search efficiency[J]. Journal of ZheJiang University (Engineering Science), 2016, 50(10): 1987-1994.
[2] GONG Yong, YANG Ying, ZHANG San-yuan, QIAN Xiao-fan. Event-related potential study on concretness effects to icon comprehension[J]. Journal of ZheJiang University (Engineering Science), 2013, 47(6): 1000-1005.
[3] DONG Tie-Xun, SUN Shou-Qian, TUN Qun, et al. Study of correlation between heart rate variability and driving fatigue[J]. Journal of ZheJiang University (Engineering Science), 2010, 44(1): 46-50.