Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (2): 224-232    DOI: 10.3785/j.issn.1008-973X.2018.02.003
Mechanical and Power Engineering     
Equivalent linear analysis and optimization of tracking differentiator
LAO Li-ming1, CHEN Ying-long1, ZHAO Yu-gang2, ZHOU Hua1
1. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China;
2. Jiujiang Branch of 707 Institute of China Shipbuilding Industry Corporation, Jiujiang 332007, China
Download:   PDF(2741KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The equivalent linear tracking differentiator near the equilibrium point was analyzed in order to solve the difficulties of various tracking functions selection and parameters setting. A unified model of the nonlinear tracking differentiator near the equilibrium point was presented. Then the asymptotic stability was proven by the Lyapunov method. The unified nonlinear model was further linearized near the equilibrium point and the effect of different nonlinear structures on linearized parameters was analyzed. Simulation examples verified the effectiveness of the equivalent linear model. The filtering property and the resulted phase lag were analyzed by the frequency response of the linearized model, and a decoupled parameter optimization method was proposed. A compound tracking differentiator with feedforward was proposed to reduce the phase lag and suppress the noise introduced by feedforward. Simulations showed the effectiveness of proposed parameter tuning method. The compound tracking differentiator achieved the best combination of tracking error and differential error.



Received: 06 December 2016      Published: 09 March 2018
CLC:  TP273  
Cite this article:

LAO Li-ming, CHEN Ying-long, ZHAO Yu-gang, ZHOU Hua. Equivalent linear analysis and optimization of tracking differentiator. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(2): 224-232.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.02.003     OR     http://www.zjujournals.com/eng/Y2018/V52/I2/224


跟踪微分器的等效线性分析及优化

为了解决跟踪微分器跟踪函数选取多样、参数调整困难的问题,研究跟踪微分器在平衡点附近的等效线性模型.提出平衡点附近非线性跟踪微分器的统一型式,用Lyapunov方法证明统一模型的稳定性.将统一模型在平衡点处线性化,得到不同非线性结构对线性化参数的影响,仿真算例验证了线性化模型的等效性.基于等效线性模型的频率特性分析跟踪微分器的滤波性能及相位滞后,据此提出跟踪微分器的参数优化方法.提出前馈补偿的复合跟踪微分器,减小相位滞后并抑制前馈噪声.数值仿真结果验证了跟踪微分器参数优化方法的可行性,表明所提复合跟踪微分器具有最佳的跟踪误差与微分误差组合.

[1] LIN Y, SHI Y, BURTON R. Modeling and robust discrete-time sliding-mode control design for a fluid power electrohydraulic actuator (EHA) system[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(1):1-10.
[2] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008.
[3] MADONSKI R, HERMAN P. Survey on methods of increasing the efficiency of extended state disturbance observers[J]. ISA transactions, 2015, 56:18-27.
[4] LEVANT A. Robust exact differentiation via sliding mode technique[J]. Automatica, 1998, 34(3):379-384.
[5] 韩京清, 王伟. 非线性跟踪-微分器[J]. 系统科学与数学, 1994, 14(2):177-183. HAN Jing-qing, WANG Wei. Nonlinear tracking-differentiator[J]. Journal of Systems Science and Mathematical Sciences, 1994, 14(2):177-183.
[6] GUO B Z, HAN J Q, XI F B. Linear tracking-differentiator and application to online estimation of the frequency of a sinusoidal signal with random noise perturbation[J]. International Journal of Systems Science, 2002, 33(5):351-358.
[7] 王新华, 陈增强, 袁著祉. 全程快速非线性跟踪-微分器[J]. 控制理论与应用, 2003, 20(6):875-878. WANG Xin-hua, CHEN Zeng-qiang, YUAN Zhu-zhi. Nonlinear tracking-differentiator with high speed in whole course[J]. Control Theory and Applications, 2003, 20(6):875-878.
[8] WANG X, CHEN Z, YANG G. Finite-time-convergent differentiator based on singular perturbation technique[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1731-1737.
[9] 史永丽, 侯朝桢. 改进的非线性跟踪微分器设计[J]. 控制与决策, 2008, 23(6):647-650. SHI Yong-li, HOU Chao-zhen. Design of improved nonlinear tracking differentiator[J]. Control and Decision, 2008, 23(6):647-650.
[10] 赵鹏, 姚敏立, 陆长捷, 等. 高稳快速非线性一线性跟踪微分器设计[J]. 西安交通大学学报, 2011, 45(8):43-48. ZHAO Peng, YAO Min-li, LU Chang-jie, et al. Design of nonlinear-linear tracking differentiator with high stability and high speed[J]. Journal of Xi'an Jiao Tong University, 2011, 45(8):43-48.
[11] ZHANG L, ZHANG Z, HUANG L. Hybrid non-linear differentiator design for a permanent-electro magnetic suspension maglev system[J]. IET Signal Processing, 2012, 6(6):559-567.
[12] 董小萌, 张平. 反正切形式跟踪微分器设计及相平面分析[J]. 控制理论与应用, 2010, 27(4):533-537. DONG Xiao-meng, ZHANG Ping. Design and phase plane analysis of an arctangent-based tracking differentiator[J]. Control Theory and Applications, 2010, 27(4):533-537.
[13] 卜祥伟,吴晓燕,马震,等. 改进的反正切跟踪微分器设计[J].上海交通大学学报, 2015, 49(2):164-168. BU Xiang-wei, WU Xiao-yuan, MA Zhen, et al. Design of a modified arctangent-based tracking differentiator[J]. Journal of Shanghai Jiao Tong University, 2015, 49(2):164-168.
[14] 邵星灵, 王宏伦. 基于改进sigmoid函数的非线性跟踪微分器[J]. 控制理论与应用, 2014, 31(8):1116-1122. SHAO Xing-ling,WANG Hong-lun. Nonlinear tracking differentiator based on improved sigmoid function[J]. Control Theory and Applications, 2014, 31(8):1116-1122.
[15] 周涛. 基于反双曲正弦函数的跟踪微分器[J]. 控制与决策, 2014, 29(6):1239-1242. ZHOU Tao. Tracking differentiator based on inverse hyperbolic sine function[J]. Control and Decision, 2014, 29(6):1239-1242.
[16] 卜祥伟, 吴晓燕, 张蕊, 等. 双曲正弦非线性跟踪微分器设计[J]. 西安交通大学学报, 2015, 49(1):107-111. BU Xiang-wei, WU Xiao-yan, ZHANG Rui, et al. Design of a hyperbolic-sine-based nonlinear tracking differentiator[J]. Journal of Xi'an Jiao Tong University, 2015, 49(1):107-111.
[17] GUO B Z, ZHAO Z L. On convergence of tracking differentiator[J]. International Journal of Control, 2011, 84(4):693-701.
[18] GUO B Z, ZHAO Z L. Weak convergence of nonlinear high-gain tracking differentiator[J]. IEEE Transactions on Automatic Control, 2013, 58(4):1074-1080.
[19] TIAN D, SHEN H, DAI M. Improving the rapidity of nonlinear tracking differentiator via feedforward[J]. IEEE Transactions on Industrial Electronics, 2014, 61(7):3736-3743.

[1] ZHAO Jie-mei, HU Zhong-hui. Path following control of AUV in horizontal plane based on dynamic feedback control[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1467-1473.
[2] ZHENG Peng-yuan, WANG Zhen-zhen, XIANG Zhen-dong, FENG Dong-han. Mixed multi-step feedback model predictive control for linear varying systems with measurable parameters[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(4): 703-709.
[3] ZHU Xiao-hua, WANG Ning. Cuckoo search algorithm with RNA crossover operation for PID control of overhead cranes[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(7): 1397-1404.
[4] SHU Shang-Shang, LUO Shi-Jian, YING Fang-Tian, HE Ji. Product family design DNA for product visual identity[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(4): 715-721.
[5] LUO Shi-Jian, WENG Jian-An, CHEN Shi, et al. Scenario-based product family design styling DNA[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(6): 1112-1117.
[6] HOU Xin, LI Beng, HAN Bei, et al. Hierarchical hybrid control system of small unmanned helicopter[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 796-800.
[7] WANG Ye, LIU Shan. Iterative learning control of non-identical desired trajectories for a class of nonlinear time-varying systems[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(5): 839-843.