Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2018, Vol. 52 Issue (1): 29-35    DOI: 10.3785/j.issn.1008-973X.2018.01.005
Mechanical and Energy Engineering     
Flow field synergy analysis and drag reduction design of non-slam check valve
WU Shi-yi-hui, LUO Kun, FAN Jian-ren
State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1602KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The field synergy principle was introduced and extended from laminar flow to turbulent flow in order to analyze flow drag reduction characteristics and optimal design method of non-slam check valve. The flow field in two different valves (before and after optimized) was simulated and analyzed by Fluent software. Pressure drop, velocity distribution, the cosine distribution of field synergy angles and effective viscosity coefficient were obtained. In the valve after optimized, the synergy between the velocity field and the velocity gradient field is worse, the effective viscosity coefficient is smaller, the flow resistance and the energy consumption are reduced. From the perspective of local flow field synergy principle, the mechanism of flow resistance change can be revealed by comparing velocity distribution with the cosine distribution of field synergy angles. Two approaches for optimizing valve design were proposed taking advantage of the field synergy principle in flow drag reduction study.



Received: 08 June 2017      Published: 15 December 2017
CLC:  TQ051  
Cite this article:

WU Shi-yi-hui, LUO Kun, FAN Jian-ren. Flow field synergy analysis and drag reduction design of non-slam check valve. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(1): 29-35.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2018.01.005     OR     http://www.zjujournals.com/eng/Y2018/V52/I1/29


轴流式止回阀的流动场协同分析与减阻设计

为了分析轴流式止回阀流阻性能,探究阀内结构优化设计方法,引入场协同原理,将该原理从层流推广至湍流.利用Fluent软件对2种不同型号(优化前、后)阀门的内流场进行数值模拟和流动场协同分析,得到压降、流速分布、流动场协同角余弦值分布和有效黏性系数.结果表明:优化后阀内流体的速度场与速度梯度场整体上的协同程度更差,有效黏性系数更小,减阻效果明显,能耗降低;通过对比分析流速分布和流动场协同角余弦值分布,还能从局部流动场协同的角度揭示流阻的变化机理.基于流动场协同原理在流动减阻研究中的优势,提出2种阀结构优化设计的思路.

[1] 张宝江. 轴流式止回阀的应用[J]. 石油化工设计, 2011, 28(2):45-46. ZHANG Bao-jiang. Application of non-slam check valve[J]. Petro-Chemical Design, 2011, 28(2):45-46.
[2] 李德禹. 阀门节能的重要途径——降低流阻系数[J]. 流体机械, 1984(1):56-59. LI De-yu. An important way to save energy of valve:reduce flow resistance coefficient[J]. Fluid Machinery, 1984(1):56-59.
[3] SIBILLA S, GALLATI M. Hydrodynamic characterization of a nozzle check valve by numerical simulation[J]. Journal of Fluids Engineering, 2008, 130(12):121101-121112.
[4] LAI Z, KARNEY B, YANG S, et al. Transient performance of a dual disc check valve during the opening period[J]. Annals of Nuclear Energy, 2017, 101:15-22.
[5] 伍国果. 轴流式止回阀动态特性的数值模拟[D]. 兰州:兰州理工大学, 2013. WU Guo-guo. Numerical simulation for dynamic characteristics of axial flow check valve[D]. Lanzhou:Lanzhou University of Technology, 2013.
[6] 张希恒, 吴佳宝, 段峰波, 等. 基于源汇法和数学解析法的轴流式止回阀阀芯流线型设计及流阻系数分析[J]. 石油化工设备, 2013, 42(4):23-26. ZHANG Xi-heng, WU Jia-bao, DUAN Feng-bo, et al. Streamlined design of axial check valve spool and analysis of flow resistance coefficient base on singularity distribution method and mathematical analytic method[J]. Petro-Chemical Equipment, 2013, 42(4):23-26.
[7] GUO Z Y, TAO W Q, SHAH R K. The field synergy (coordination) principle and its applications in enhancing single phase convective heat transfer[J]. International Journal of Heat and Mass Transfer, 2005, 48(9):1797-1807.
[8] MENG J A, LIANG X G, LI Z X. Field synergy optimization and enhanced heat transfer by multi-longitudinal vortexes flow in tube[J]. International Journal of Heat and Mass Transfer, 2005, 48(16):3331-3337.
[9] CHEN Q, REN J, MENG J A. Field synergy equation for turbulent heat transfer and its application[J]. International Journal of Heat and Mass Transfer, 2007, 50(25):5334-5339.
[10] HAMID M O A, ZHANG B, YANG L. Application of field synergy principle for optimization fluid flow and convective heat transfer in a tube bundle of a pre-heater[J]. Energy, 2014, 76(76):241-253.
[11] ZHAI Y, LI Z, WANG H, et al. Analysis of field synergy principle and the relationship between secondary flow and heat transfer in double-layered microchannels with cavities and ribs[J]. International Journal of Heat and Mass Transfer, 2016, 101:190-197.
[12] 陈群, 任建勋, 过增元. 流体流动场协同原理及其在减阻中的应用[J]. 科学通报, 2008, 53(4):489-492. CHEN Qun, REN Jian-xun, GUO Zeng-yuan. A study of synergy principle on fluid flow field and its application in resistance reduction[J]. Chinese Science Bulletin, 2008, 53(4):489-492.
[13] ZHANG B, LV J, ZUO J. Compressible fluid flow field synergy principle and its application to drag reduction in variable-cross-section pipeline[J]. International Journal of Heat and Mass Transfer, 2014, 77:1095-1101.
[14] 吕金升. 场协同流动分析模型基础研究[D]. 大连:大连理工大学, 2014. LV Jin-sheng. Fundamental study on the fluid flow analysis using field synergy principle[D]. Dalian:Dalian University of Technology, 2014.
[15] ZHU X W, ZHAO J Q. Improvement in field synergy principle:more rigorous application, better results[J]. International Journal of Heat and Mass Transfer, 2016, 100:347-354.

[1] DONG Hui, WU Kai-song, KUANG Yu-chun, DAI Mao-lin. Study on separation law of hydrate slurry in hydrocyclone based on CFD-DEM[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(9): 1811-1820.
[2] ZHANG Li-dong, WEI Qing-wen, WANG Qing. Influence of flights' shape on motion and mixing of binary particles in rotary retort[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1542-1550.