Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)  2017, Vol. 51 Issue (10): 1988-1995    DOI: 10.3785/j.issn.1008-973X.2017.10.013
Civil Engineering, Transportation Engineering     
Fluctuating aerodynamic characteristics and wind-induced swing response of typical iced conductors
LOU Wen-juan1, LUO Gang1, YANG Xiao-hui2, LU Ming2
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China;
2. Power Transmission Line Galloping Prevention and Control Technology Laboratory, State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China
Download:   PDF(2016KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The mean and fluctuating aerodynamic forces of D-shaped and crescent iced conductors were measured through rigid model high frequency force balance wind tunnel tests in order to analyze the wind-induced swing response characteristics of conductors in ice-wind cases. The change law of iced conductors' aerodynamic coefficients with wind attack angle was obtained, and the quasi-steady assumption of along-wind fluctuating wind loads of iced conductors was verified. Wind-induced swing response characteristics of iced conductors were analyzed by frequency-domain calculation method. The rationality of Chinese codes was investigated from the aspects of aerodynamic and wind-induced swing characteristics. Results show that both ice shapes and wind attack angle greatly influence the aerodynamic forces of iced conductors. The wind-induced responses of D-shape iced conductors in certain cases may be close to those of bare conductors under strong wind conditions. Current codes ignore the influences of ice shape and wind attack angle on aerodynamic characteristics of conductors and give single value for the drag coefficient of iced conductors, which is not completely reasonable. The wind-induced responses of iced conductors may be underestimated in most cases with method in codes.



Received: 31 August 2016      Published: 27 September 2017
CLC:  TU318  
Cite this article:

LOU Wen-juan, LUO Gang, YANG Xiao-hui, LU Ming. Fluctuating aerodynamic characteristics and wind-induced swing response of typical iced conductors. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(10): 1988-1995.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2017.10.013     OR     http://www.zjujournals.com/eng/Y2017/V51/I10/1988


典型覆冰导线脉动气动力特性及风偏响应

为了研究冰风工况下导线的风偏响应特性,通过刚性模型高频天平测力风洞试验,测定D形和新月形覆冰导线气动力的平均值和脉动值,获得两类覆冰导线的气动力系数随风攻角的变化规律,验证了覆冰导线顺风向脉动风荷载的准定常假定.利用频域计算方法,研究两类覆冰导线的风偏特性.从覆冰导线气动力和风偏特性两方面对我国规范相关规定的合理性进行研究.结果表明,覆冰导线气动力受覆冰形状和风攻角的影响很大;D形覆冰导线在某些风攻角工况下的风偏响应接近大风工况下的裸导线;我国现行输电线路设计规范忽略覆冰形状和风攻角等因素对导线气动力的影响,对导线的阻力系数取单一值,这种规定不尽合理;采用规范风荷载计算得到的覆冰导线风偏响应在大多数工况下偏小.

[1] 肖正直,晏致涛,李正良,等.八分裂输电导线结冰风洞及气动力特性试验[J].电网技术,2009, 33(5):90-94. XIAO Zheng-zhi, YAN Zhi-tao, LI Zheng-liang, et al. Wind tunnel and aerodynamic characteristics tests for ice-covering of transmission line adopting 8-bundled conductor[J]. Power System Technology, 2009, 33(5):90-94.
[2] GB 50545-2010. 110kV~750kV架空输电线路设计规范[S].北京:中国计划出版社,2010:31-32.
[3] DL/T 5154-2012,架空输电线路杆塔结构设计技术规定[S].北京:中国计划出版社,2012:18-19.
[4] KEUTGEN R, LILIEN J. Benchmark cases for galloping with results obtained from wind tunnel facilities-validation of a finite element model[J]. IEEE Transactions on Power Delivery, 2000, 15(1):367-374.
[5] 马文勇,顾明,全涌,等.准椭圆形覆冰导线气动力特性试验研究[J].同济大学学报:自然科学版,2010,38(10):1409-1413. MA Wen-yong, GU Ming, QUAN Yong, et al. Testing study on aerodynamic force characteristics of quasi-oval shape iced conductor[J]. Journal of Tongji University:Natural Science, 2010, 38(10):1409-1413.
[6] 张宏雁,严波,周松,等.覆冰四分裂导线静态气动力特性试验[J].空气动力学学报,2011,29(2):150-154. ZHANG Hong-yan, YAN Bo, ZHOU Song, et al. Static test on aerodynamic characteristics of iced quad bundled conductors[J]. Acta Aerodynamica Sinica, 2011, 29(2):150-154.
[7] 林巍.覆冰输电导线气动力特性风洞试验及数值模拟研究[D].杭州:浙江大学, 2012. LIN Wei. Wind tunnel test and numerical simulation study on aerodynamic characteristics of iced transmission lines[D]. Hangzhou:Zhejiang University, 2012.
[8] LOU W, LV J, HUANG M F, et al. Aerodynamic force characteristics and galloping analysis of iced bundled conductors[J]. Wind and Structures, 2014,18(2):135-154.
[9] CHABART O, LILIEN J L. Galloping of electrical lines in wind tunnel facilities[J]. Journal of Wind Engineering and Industrial Aerodynam ̄ics, 1998, 74(6):967-976.
[10] DAVENPORT A G. The application of statistical concepts to the wind loading of structures[J]. Proceedings of the Institution of Civil Engineers, 1961, 19(4):449-472.
[11] LOREDO-SOUZA A M. The behavior of transmission lines under high winds[D]. London:The University of Western Ontario, 1996.
[12] 吴承卉,黄铭枫,姜雄,等.基于半刚性模型风洞试验的锅炉塔架风振分析[J].空气动力学学报,2015,33(3):353-359. WU Cheng-hui, HUANG Ming-feng, JIANG Xiong, et al. Wind-induced vibration analysis of lattice-truss tower installed with a boiler based on semi-rigid model test[J]. Acta Aerodynam ̄ica Sinica, 2015, 33(3):353-359.
[13] 刘小会,严波,林雪松,等.500kV超高压输电线路风偏数值模拟研究[J].工程力学,2009,26(1):244-249. LIU Xiao-hui, YAN Bo, LIN Xue-song, et al. Numerical simulation of windage yaw of 500kV UHV transmission lines[J]. Engineering Me ̄chanics, 2009,26(1):244-249.
[14] 李黎,肖林海,罗先国,等.特高压绝缘子串的风偏计算方法[J].高电压技术,2013,39(12):2924-2932. LI Li, XIAO Lin-hai, LUO Xian-guo, et al. Windage yaw calculation method of UHV insu ̄lator strings[J]. High Voltage Engineering, 2013, 39(12):2924-2932.
[15] ABOSHOSHA H, DAMATTY A E. Dynamic response of transmission line conductors under downburst and synoptic winds[J]. Wind and Structures, 2015, 21(2):241-272.
[16] GB 50009-2012,建筑结构荷载规范[S].北京:中国建筑工业出版社, 2012:58.
[17] 沈国辉,徐晓斌,楼文娟,等.导线覆冰脱冰有限元模拟方法的适用性分析[J].工程力学,2011, 28(10):9-15. SHEN Guo-hui, XU Xiao-bin, LOU Wen-juan, et al. Applicability analysis of finite element methodologies to simulate the ice-accreting and ice-shedding on transmission lines[J]. Engineering Mechanics, 2011, 28(10):9-15.
[18] 楼文娟,杨悦,吕中宾,等.考虑气动阻尼效应的输电线路风偏动态分析方法[J].振动与冲击,2015, 34(6):24-29. LOU Wen-juan, YANG Yue, LV Zhong-bin, et al. Windage yaw dynamic analysis methods for transmission lines considering aerodynamic damping effect[J]. Journal of Vibration and Shock, 2015, 34(6):24-29.
[19] SIMIU E, SCANLAN R H. Wind effects on structures[M]. 2nd ed. New York:Wiley, 1986.
[20] 楼文娟,李天昊,吕中宾,等.多分裂子导线气动力系数风洞试验研究[J].空气动力学学报,2015,33(6):787-792. LOU Wen-juan, LI Tian-hao, LV Zhong-bin, et al. Wind tunnel test on aerodynamic coefficients of multi-bundled sub-conductors[J]. Acta Aerodynamica Sinica, 2015, 33(6):787-792.

[1] WU Ke-xian, JIN Wei-liang, XIA Jin. Influence of load partial factors adjustment on design of masonry structures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1901-1910.
[2] XU Xian, CAI Hui-ying, SUN Feng-xian, LUO Yao-zhi. Optimal displacement control of tensegrity structures based on linear programming[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(11): 2093-2100.