[1] FAJARDO G, ESCADEILLAS G, ARLIGUIE G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial”
sea-water[J]. Corrosion Science, 2006, 48(1): 110-125.
[2] MIRANDA J M, GONZLEZ J A, COBO A, et al. Several questions about electrochemical rehabilitation methods for reinforced concrete structures [J]. Corrosion Science, 2006, 48(8): 2172-2188.
[3] YEIH W, CHANG J J, HUNG C C. Selecting an adequate procedure for the electrochemical chloride removal[J]. Cement and Concrete Research, 2006, 36(3): 562-570.
[4] SAWADA S, PAGE C L, PAGE M M. Electrochemical injection of organic corrosion inhibitors into concrete[J]. Corrosion Science, 2005, 47(8): 2063-2078.
[5] SAWADA S, KUBO J, PAGE C L, et al. Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: Part 1. effects on pore solution chemistry[J]. Corrosion Science, 2007, 49(3): 1186-1204.
[6] KUBO J, SAWADA S, PAGE C L, et al. Electrochemical inhibitor injection for control of reinforcement corrosion in carbonated concrete [J]. Materials and Corrosion, 2008, 59(2): 107-114.
[7] 唐军务,李森林,蔡伟成,等.钢筋混凝土结构电渗阻锈技术研究[J].海洋工程. 2008, 26(3): 83-88.
TANG Jun-wu, LI Sen-lin, CAI Wei-cheng,et al. Investigation of inhibitor electromigration anticorrosion technology on reinforced concrete [J]. The Ocean Engineering, 2008, 26(3): 83-88.
[8] 洪定海,王定选,黄俊友.电迁移型阻锈剂[J].东南大学学报:自然科学版. 2006, 36(增刊2): 154-159.
HONG Ding-hai, WANG Ding-xuan, HUANG Jun-you. Electro-migrating corrosion inhibitors [J]. Journal of Southeast University: Natural Science, 2006, 36(supple. 2): 154-159.
[9] 张奕.氯离子在混凝土中的输运机理研究[D].杭州: 浙江大学, 2008, 21-23.
ZHANG Yi. Mechanics of chloride ions transportion in concrete [D]. Hangzhou: Zhejiang University, 2008,21-23.
[10] 延永东.氯离子在损伤及开裂混凝土内的输运机理及作用效应[D].杭州: 浙江大学, 2011, 47-49.
YAN Yong-dong. Transportation of chloride ions in damaged and cracked concrete and its action [D]. Hangzhou: Zhejiang University, 2011, 47-49.
[11] 章思颖.应用于双向电渗技术的电迁移型阻锈剂的筛选[D].杭州: 浙江大学, 2012, 11-15.
ZHANG Si-ying. A study of corrosion inhibitors for bidirectional electromigration rehabilitation [D]. Hangzhou: Zhejiang University, 2012, 11-15.
[12] 章思颖,金伟良,许晨.混凝土中胺类有机物-胍对钢筋氯盐腐蚀的作用[J].浙江大学学报: 工学版. 2013, 47(3): 18.
ZHANG Si-ying, JIN Wei-liang, XU Chen. Effectiveness of an amine-based inhibitor-guanidine for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Zhejiang University: Engineering Science, 2013, 47(3): 18.
[13] MARCOTTE T D, HANSSON C M, HOPE B B. The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar Part II: microstructural characterization [J]. Cement and Concrete Research, 1999, 29(10): 1561-1568.
[14] SIEGWART M, LYNESS J F, MCFARLAND B J. Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions[J]. Cement and Concrete Research, 2003, 33(8): 1211-1221.
[15] 王文仲,郑秀梅,刘晓丹,等.电化学除盐对混凝土微观结构的影响[J].混凝土. 2011, (3): 28-30.
WANG Wen-zhong, ZHENG Xiu-mei, LIU Xiao-dan, et al. Influence of microscopic structure in concrete by electrochemical salt releasing [J]. Concrete, 2011, (3): 28-30.
[16] IHEKWABA N M, HOPE B B. Mechanical properties of anodic and cathodic regions of ECE treated concrete[J]. Cement and Concrete Research, 1996, 26(5): 771-780.
[17] SYLEV T A, MCNALLY C, RICHARDSON M G. The effect of a new generation surface-applied organic inhibitor on concrete properties[J]. Cement and Concrete Composites, 2007, 29(5): 357-364.
[18] DE SCHUTTER G, LUO L. Effect of corrosion inhibiting admixtures on concrete properties[J]. Construction and Building Materials, 2004, 18(7): 483-489.
[19] HEREN Z, LMEZ H. The influence of ethanolamines on the hydration and mechanical properties of Portland cement[J]. Cement and Concrete Research, 1996, 26(5): 701-705.
[20] LI L Y, PAGE C L. Finite element modelling of chloride removal from concrete by an electrochemical method [J]. Corrosion Science, 2000, 42(12): 2145-2165.
[21] NMAI C K. Multi-functional organic corrosion inhibitor [J]. Cement and Concrete Composites, 2004, 26(3): 199-207.
[22] MORI K, SPAGNOLI A, MURAKAMI Y, et al. A new non-contacting non-destructive testing method for defect detection in concrete [J]. NDT and E International, 2002, 35(6): 399-406.
[23] BAI Y, BASHEER P, CLELAND D J, et al. State-of-the-art applications of the pull-off test in civil engineering [J]. International Journal of Structural Engineering, 2009, 1(1): 93-103.
[24] 丁杭杰,陈璨,赵羽习,等.采用LIMPET测试混凝土强度的试验研究[J].混凝土. 2013, (3): 33-36.
DING Hang-jie, CHEN Can, ZHAO Yu-xi, et al. Experimental research on the strength of concree measured by limpet [J]. Concrete, 2013, (3): 33-36.
[25] 孙文博,高小建,杨英姿,等.电化学除氯处理后的混凝土微观结构研究[J].哈尔滨工程大学学报. 2009, (10): 1108-1112.
SUN Wen-bo, GAO Xiao-jian, YANG Ying-zi, et al. Microstructure of concrete after electrochemical chloride extraction treatment [J]. Journal of Harbin Engineering University, 2009, (10): 1108-1112.
[26] VAN DEN HONDEL A J, POLDER R B. Electrochemical realkalisation and chloride removal of concrete [J]. Construction Repair, 1992, 6(5): 19-24.
[27] 吴中伟,张鸿直.膨胀混凝土[M].北京:中国铁道出版社, 1990.
[28] IHEKWABA N M, HOPE B B, Hansson C M. Pull-out and bond degradation of steel rebars in ECE concrete [J]. Cement and Concrete Research. 1996, 26(2): 267-282.
[29] 韦江雄,王新祥,郑靓,等.电除盐中析氢反应对钢筋-混凝土粘结力的影响[J].武汉理工大学学报. 2009, 12(9): 30-34.
WEI Jiang-xiong, WANG Xin-xiang, ZHENG Jing, et al. Research on the hydrogen evolution reaction and its effect on the bond strength between reinforcement and concrete during electrochemical chloride extraction [J]. Journal of Wuhan University of technology, 2009, 12(9): 30-34.
[30] SIEGWART M, LYNESS J F, MCFARLAND B J. Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions[J]. Cement and Concrete Research. 2003, 33(8): 1211-1221.
[31] 孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨:哈尔滨工业大学, 2006.
MENG Qin-chao. Research on influence factors of concrete durability and pore structures [D]. Harbin: Harbin Institute of Technology, 2006.
|