Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength" /> Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength" /> Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength" /> 双向电渗对钢筋混凝土的修复效果实验——保护层表面强度变化规律
Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength
XU Chen 1,2, JIN Wei-liang 1, HUANG Nan1, WU Hang-tong1, MAO Jiang-hong2, XIA Jin1
1. Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China; 2. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
Download:   PDF(1955KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Electromigration based bidirectional electromigration rehabilitation (BIEM) technology was used to study the changing rule of protective layer strength in reinforced concrete blocks for repair. The protective layer strength was measured under different electric parameters, water cement ratios, initial chloride salt contents and surface carbonation situations. The measured results were compared with those of blocks after electrochemical chloride extraction (ECE) to study the repair effect of BIEM on the protective layer strength. Mercury injection test was taken to study the pore structure distribution after electrochemical treatment. The results show that the protective layer strength decreases after BIEM, and the decrease amplitude increases with the increase of current density and treatment duration. Moreover, water cement ratio, initial chloride salt content and surface carbonation also affect the decrease of strength. Protective layer porosity decreases a lot, including both positive and negative pores.



Published: 01 June 2015
CLC:  TU 375  
Cite this article:

XU Chen, JIN Wei-liang, HUANG Nan, WU Hang-tong, MAO Jiang-hong, XIA Jin.

Experiment on repair effect of bidirectional electromigration rehabilitation on reinforced concrete:changing rule of protective layer strength
. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(6): 1128-1138.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2015.06.018     OR     http://www.zjujournals.com/eng/Y2015/V49/I6/1128


双向电渗对钢筋混凝土的修复效果实验——保护层表面强度变化规律

为了实现对钢筋混凝土试块的修复,采用基于电迁移原理的双向电渗技术研究试块保护层表面的强度变化规律.测量不同通电参数、水灰比、初始氯盐掺量、表面碳化情况下试块保护层的表面强度,并将其与电化学除氯后的试块进行比较,探究双向电渗对保护层表面强度的修复效果.采用压汞实验对试块保护层的孔隙结构进行研究,对比经过不同时长处理后试块保护层孔隙特征的变化.结果表明:试块在经过双向电渗处理后,保护层的表面强度降低,下降幅度随电流密度和通电时间的增加而增大;试件表面强度降低的程度与水灰比、初始氯盐质量分数以及表面碳化均存在相关性;保护层孔隙率下降程度较大,有害孔隙与无害孔隙均有减少.

[1] FAJARDO G, ESCADEILLAS G, ARLIGUIE G. Electrochemical chloride extraction (ECE) from steel-reinforced concrete specimens contaminated by “artificial”
 sea-water[J]. Corrosion Science, 2006, 48(1): 110-125.
[2] MIRANDA J M, GONZLEZ J A, COBO A, et al. Several questions about electrochemical rehabilitation methods for reinforced concrete structures [J]. Corrosion Science, 2006, 48(8): 2172-2188.
[3] YEIH W, CHANG J J, HUNG C C. Selecting an adequate procedure for the electrochemical chloride removal[J]. Cement and Concrete Research, 2006, 36(3): 562-570.
[4] SAWADA S, PAGE C L, PAGE M M. Electrochemical injection of organic corrosion inhibitors into concrete[J]. Corrosion Science, 2005, 47(8): 2063-2078.
[5] SAWADA S, KUBO J, PAGE C L, et al. Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: Part 1. effects on pore solution chemistry[J]. Corrosion Science, 2007, 49(3): 1186-1204.
[6] KUBO J, SAWADA S, PAGE C L, et al. Electrochemical inhibitor injection for control of reinforcement corrosion in carbonated concrete [J]. Materials and Corrosion, 2008, 59(2): 107-114.
[7] 唐军务,李森林,蔡伟成,等.钢筋混凝土结构电渗阻锈技术研究[J].海洋工程. 2008, 26(3): 83-88.
TANG Jun-wu, LI Sen-lin, CAI Wei-cheng,et al. Investigation of inhibitor electromigration anticorrosion technology on reinforced concrete [J]. The Ocean Engineering, 2008, 26(3): 83-88.
[8] 洪定海,王定选,黄俊友.电迁移型阻锈剂[J].东南大学学报:自然科学版. 2006, 36(增刊2): 154-159.
HONG Ding-hai, WANG Ding-xuan, HUANG Jun-you. Electro-migrating corrosion inhibitors [J]. Journal of Southeast University: Natural Science, 2006, 36(supple. 2): 154-159.
[9] 张奕.氯离子在混凝土中的输运机理研究[D].杭州: 浙江大学, 2008, 21-23.
ZHANG Yi. Mechanics of chloride ions transportion in concrete [D]. Hangzhou: Zhejiang University, 2008,21-23.
[10] 延永东.氯离子在损伤及开裂混凝土内的输运机理及作用效应[D].杭州: 浙江大学, 2011, 47-49.
YAN Yong-dong. Transportation of chloride ions in damaged and cracked concrete and its action [D]. Hangzhou: Zhejiang University, 2011, 47-49.
[11] 章思颖.应用于双向电渗技术的电迁移型阻锈剂的筛选[D].杭州: 浙江大学, 2012, 11-15.
ZHANG Si-ying. A study of corrosion inhibitors for bidirectional electromigration rehabilitation [D]. Hangzhou: Zhejiang University, 2012, 11-15.
[12] 章思颖,金伟良,许晨.混凝土中胺类有机物-胍对钢筋氯盐腐蚀的作用[J].浙江大学学报: 工学版. 2013, 47(3): 18.
ZHANG Si-ying, JIN Wei-liang, XU Chen. Effectiveness of an amine-based inhibitor-guanidine for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Zhejiang University: Engineering Science, 2013, 47(3): 18.
[13] MARCOTTE T D, HANSSON C M, HOPE B B. The effect of the electrochemical chloride extraction treatment on steel-reinforced mortar Part II: microstructural characterization [J]. Cement and Concrete Research, 1999, 29(10): 1561-1568.
[14] SIEGWART M, LYNESS J F, MCFARLAND B J. Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions[J]. Cement and Concrete Research, 2003, 33(8): 1211-1221.
[15] 王文仲,郑秀梅,刘晓丹,等.电化学除盐对混凝土微观结构的影响[J].混凝土. 2011, (3): 28-30.
WANG Wen-zhong, ZHENG Xiu-mei, LIU Xiao-dan, et al. Influence of microscopic structure in concrete by electrochemical salt releasing [J]. Concrete, 2011, (3): 28-30.
[16] IHEKWABA N M, HOPE B B. Mechanical properties of anodic and cathodic regions of ECE treated concrete[J]. Cement and Concrete Research, 1996, 26(5): 771-780.
[17] SYLEV T A, MCNALLY C, RICHARDSON M G. The effect of a new generation surface-applied organic inhibitor on concrete properties[J]. Cement and Concrete Composites, 2007, 29(5): 357-364.
[18] DE SCHUTTER G, LUO L. Effect of corrosion inhibiting admixtures on concrete properties[J]. Construction and Building Materials, 2004, 18(7): 483-489.
[19] HEREN Z, LMEZ H. The influence of ethanolamines on the hydration and mechanical properties of Portland cement[J]. Cement and Concrete Research, 1996, 26(5): 701-705.
[20] LI L Y, PAGE C L. Finite element modelling of chloride removal from concrete by an electrochemical method [J]. Corrosion Science, 2000, 42(12): 2145-2165.
[21] NMAI C K. Multi-functional organic corrosion inhibitor [J]. Cement and Concrete Composites, 2004, 26(3): 199-207.
[22] MORI K, SPAGNOLI A, MURAKAMI Y, et al. A new non-contacting non-destructive testing method for defect detection in concrete [J]. NDT and E International, 2002, 35(6): 399-406.
[23] BAI Y, BASHEER P, CLELAND D J, et al. State-of-the-art applications of the pull-off test in civil engineering [J]. International Journal of Structural Engineering, 2009, 1(1): 93-103.
[24] 丁杭杰,陈璨,赵羽习,等.采用LIMPET测试混凝土强度的试验研究[J].混凝土. 2013, (3): 33-36.
DING Hang-jie, CHEN Can, ZHAO Yu-xi, et al. Experimental research on the strength of concree measured by limpet [J]. Concrete, 2013, (3): 33-36.
[25] 孙文博,高小建,杨英姿,等.电化学除氯处理后的混凝土微观结构研究[J].哈尔滨工程大学学报. 2009, (10): 1108-1112.
SUN Wen-bo, GAO Xiao-jian, YANG Ying-zi, et al. Microstructure of concrete after electrochemical chloride extraction treatment [J]. Journal of Harbin Engineering University, 2009, (10): 1108-1112.
[26] VAN DEN HONDEL A J, POLDER R B. Electrochemical realkalisation and chloride removal of concrete [J]. Construction Repair, 1992, 6(5): 19-24.
[27] 吴中伟,张鸿直.膨胀混凝土[M].北京:中国铁道出版社, 1990.
[28] IHEKWABA N M, HOPE B B, Hansson C M. Pull-out and bond degradation of steel rebars in ECE concrete [J]. Cement and Concrete Research. 1996, 26(2): 267-282.
[29] 韦江雄,王新祥,郑靓,等.电除盐中析氢反应对钢筋-混凝土粘结力的影响[J].武汉理工大学学报. 2009, 12(9): 30-34.
WEI Jiang-xiong, WANG Xin-xiang, ZHENG Jing, et al. Research on the hydrogen evolution reaction and its effect on the bond strength between reinforcement and concrete during electrochemical chloride extraction [J]. Journal of Wuhan University of technology, 2009, 12(9): 30-34.
[30] SIEGWART M, LYNESS J F, MCFARLAND B J. Change of pore size in concrete due to electrochemical chloride extraction and possible implications for the migration of ions[J]. Cement and Concrete Research. 2003, 33(8): 1211-1221.
[31] 孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨:哈尔滨工业大学, 2006.
MENG Qin-chao. Research on influence factors of concrete durability and pore structures [D]. Harbin:  Harbin Institute of Technology, 2006.
 
[1] YIN Shi-ping, LI Yao,YANG Yang, YE Tao. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 904-913.
[2] WANG Qiang, JIN Ling-zhi, CAO Xia, LV Hai-bo. Experimental study on shear performance of reactive powder concrete beam[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 922-930.
[3] XIANG Yi-qiang, HE Chao-chao, QIU Zheng. Calculation of long-term slippage for externally prestressing steel-concrete composite beam[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 739-744.
[4] JIN Wei liang, ZHOU Zheng dong, ZHANG Jun,MAO Jiang hong, CUI Lei, PAN Chong gen. Experimental research on fatigue properties of corroded steel bars based on dynamic piezomagnetism[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 225-230.
[5] DONG Yun hong, CHUN qing, XU Xian bao, WANG Jian guo, HUANG Shan. Critical corrosion depth of rebar of Republican Period reinforced concrete structures[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 27-37.
[6] WANG Chun jiang, ZHU Zhen yu, LI Xiang min, JIANG Li xue, XU Qing feng. High precision finite element simulation on lateral mechanical behavior of masonry wall[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(6): 1024-1030.
[7] GUAN Dong zhi, GUO Zheng xing, YU Jian bing, YANG Sen1. Structural measures and experimental study of precast concrete joints of anchored prestressing strands in frames[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(2): 282-291.
[8] WANG Chun jiang, ZHU Zhen yu, LI Xiang min, JIANG Li xue, XU Qing feng. Highprecision finite element simulation on lateral mechanical behavior of masonry wall[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(12): 2425-2431.
[9] LI Qiang, JIN Xian yu. Effect of stirrup corrosion on bearing capacity of uniaxial compression short column[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(10): 1929-1938.
[10] XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Long-term performance of multi-box composite bridges under transverse prestressing[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 956-962.
[11] HE Yu-liang, XIANG Yi-qiang, LI Shao-jun, LIU Li-si. Analysis on shear-lag effect of composite girders based on different parabolic warping displacement function[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(11): 1933-1940.
[12] JIN Wei-liang, HUANG Nan, XU Chen, MAO Jiang-hong. Experimental research on effect of bidirectional electromigration rehabilitation on reinforced concrete—Concentration changes of inhibitor, chloride ions and total alkalinity[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(9): 1586-1594.
[13] JIN Wei-liang, WANG Yi. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 221-227.
[14] WEI Jun, ZHANG Meng, YANG Man-juan, DONG Rong-zhen. Calculation method for designing concrete structure guardrail[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(2): 249-253.
[15] YANG Tao, ZOU Dao-qin. Numerical simulation of crack growth of
reinforced concrete beam based on XFEM
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(3): 495-501.