Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Influence of mass flow rate of secondary air on gas/solid flow characteristics of a swirl burner
DONG Kang, ZHOU Hao, YANG Yu, WANG Ling-li, CEN Ke-fa
College of Energy Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
Download:   PDF(4850KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to investigate the flow characteristics of a low NOx swirl burner and the correlation between the flow characteristics and high temperature corrosion on the side walls, an experimental investigation on different mass flow rates of secondary air was conducted using a threecomponent particledynamics anemometry (PDA) system. Velocities and turbulent velocities, the shape of the recirculation zone, particle concentrations and particle diameters were obtained. Results showed that there is an annular recirculation zone near the burner outlet, and its size and the radial and tangential velocities located in secondary air region all increase with the increase of the mass flow rate of secondary air. Particles are rich in centre and lean outside and this tendency is more obvious with the decrease of the mass flow rate of secondary air. The size of particles located in the central region is smaller than that in the outside, which is hardly influenced by the mass flow rate of the secondary air. The centre rich distribution of particle concentration is easy to cause the badly burnout of pulverized coal. The air flow carrying coal particles may impact the water wall tubes, resulting in high temperature corrosion. The distribution of the particle diameter also causes that large particles can easily penetrate the recirculation zone to collide with the side water walls, which might lead to deposit attack on the water wall tubes.



Published: 01 December 2014
CLC:  TK 222  
Cite this article:

DONG Kang, ZHOU Hao, YANG Yu, WANG Ling-li, CEN Ke-fa. Influence of mass flow rate of secondary air on gas/solid flow characteristics of a swirl burner. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(12): 2162-2171.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.12.009     OR     http://www.zjujournals.com/eng/Y2014/V48/I12/2162


二次风风量对旋流燃烧器气固流动特性的影响

为了研究低NOx旋流燃烧器出口流场特性以及其与水冷壁高温腐蚀的相关性,使用三维颗粒动态分析仪(PDA)测量了不同二次风风量下的低NOx旋流燃烧器出口附近的轴向、径向、切向以及湍动速度分布、回流区的形状、颗粒浓度分布以及颗粒粒径分布.结果表明:在该燃烧器出口附近有一个环形回流区,回流区的大小以及位于二次风区域的径向速度和切向速度都随着二次风风量的增大而增大;颗粒浓度呈现内浓外淡的分布,随着二次风风量的减小,这种趋势更加明显;位于中心区域的粒径略小于外围颗粒直径,二次风风量对其影响较小;颗粒的集中分布容易导致煤粉不易燃尽.气流携带煤粉可能冲刷水冷壁,造成高温腐蚀.因颗粒直径为内小外大的分布,这使得较大的颗粒容易穿过回流区到达壁面造成水冷壁沉积腐蚀.

[1] NAVA-PAZ J C, PLUMLEY A L, CHOW O K, et al.Waterwall corrosion mechanisms in coal combustion environments[J]. Materials at High Temperatures, 2002,19(3): 127137.
[2] 田军,唐亚平,杨立中.低NOx燃烧技术探讨[J].能源研究与管理, 2013(2): 32-36.
TIAN Jun, TANG Ya-ping, YANG Li-zhong. Discussion on Low NOx combustion Technology[J]. Energy Research and Management, 2013(2): 32-36.
[3] 洪荣坤,沈跃良,赵振峰.600 MW超临界对冲燃烧锅炉CO和NOx排放特性的研究[J]. 动力工程学报, 2012, 32(12): 922-927.
HONG R K, SHEN Y L, ZHAO Z F Emission characteristics of CO and NOx from opposed firing boiler in a 600 MW supercritical unit[J]. Journal of Chinese Society of Power Engineering, 2012, 32(12): 923-927.
[4] TSUMURA T, OKAZAKI H, DERNJATIN P, et al. Reducing the minimum load and NOx emissions for lignite-fired boiler by applying a stable-flame concept[J]. Applied Energy, 2003,74(3): 415-424.
[5] 李争起,王富强,陈志超,等.扩口位置对旋流燃烧器出口流场影响的研究[J].中国电机工程学报, 2007, 27(35): 49-54.
LI Zheng-qi, WANG Fu-qiang, CHEN Zhi-chao, et al. Effects of outlet positions on characteristics of gas-particle two phase flows of the swirl burner[J]. Proceedings of the CSEE, 2007, 27(35): 49-54.
[6] 尹航,戴韧,张建辉,等.旋流器安装角对低旋流燃烧流场的影响[J].动力工程学报, 2011, 31(9): 664-671.
YIN Hang, DAI Ren, ZHANG Jian-hui, et al. Effect of vane setting angle of swirler on flow field of a low swirl burner[J]. Journal of Chinese Society of Power Engineering, 2011, 31(9): 664-671.
[7] NEMODA S, BAKI V, OKA S, et al. Experimental and numerical investigation of gaseous fuel combustion in swirl chamber[J]. International Journal Heat and Mass Transfer, 2005, 48(1): 4623-4632.
[8] GILLANDT I, FRITSCHING U, BAUCKHAGE K. Measurement of phase interaction in dispersed gas/particle two-phase flow[J]. International Journal of Multiphase, 2001, 27(8): 1313-1332.
[9] ASA L, GARCIA J A, CERECEDO L M, et al. Particle concentration and loacl mass flux measurements in two-phase flows with PDA. Application to a study on the dispersion of spherical particles in a turbulent air jet[J]. International Journal of Multiphase Flow, 2002, 28 (2): 301-324.
[10] ALI M M, TICHA B H, SAUTET J C, et al. Measurement of phase interaction in dispersed gas/particle two phase flow by phase doppler anemometry[J]. Thermal Science, 2008, 12(2): 59-68.
[11] JING J P, LI Z Q, ZHU Q Y, et al. Influence of the outer secondary air vane angle on the gas/particle flow characteristics near the double swirl flow burner region[J]. Energy, 2011, 36(1): 258-267.
[12] CHEN Z C, LI Z Q, JING J P, et al. Gas/particle flow characteristics of two swirl burners[J]. Energy Conversion and Management, 2009, 50(5): 1180-1191.
[13] MOON S, BAE C, CHOI J, et al. The influence of airflow on fuel spray characteristics from a slit injector[J]. Fuel,2007, 86(3): 400-409.
[14] FAN W D, LI Y Y, LIN Z C, et al. PDA research on a novel pulverized coal combustion technology for a large utility boiler[J]. Energy, 2010, 35(5): 2141-2148.

[1] LIU Zi hao, ZHOU Hao, ZHOU Ming xi, CHENG Ming, LIU Rui peng, CEN Ke fa. Influence of coke size on combustion zone distribution in sintering bed[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2016, 50(4): 691-697.
[2] SHEN Yue-liang,ZHOU Hao, HU Min2, YANG Yu,WU Jian-bo, CEN Ke-fa. Application of electrostatic grid system in measuring flow characteristics of a swirl burner[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(9): 1658-1665.
[3] ZHOU Hao, WU Jian-bo, YANG Yv, LI Ya-peng, HU Shan-tao, CEN Ke-fa. Experimental measurement of gas-solid two-phase flow of
a swirl burner by optical wave method
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(12): 2189-2193.