Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Fiber reconstruction algorithm based on discrete spherical deconvolution
LI Zhi-juan, FENG Yuan-jing, NIU Yan-peng, LI Rong, YE Feng
College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
Download:   PDF(2294KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to resolve the problem that the tracking process based on diffision tensor imaging (DTI) has difficulty in describing the complex fiber structure of the brain white matter, a deterministic tracking algorithm based on discrete spherical deconvolution was proposed. The algorithm uses discrete fiber orientation density function to build the spherical deconvolution model, which aims at relieving the dependence on the continuous spherical function model and getting high angular resolution identification. A spherical Gaussian function was used to make up for the discretization error, then the streamline tracking algorithm was implemented on the basis of the aboving model. Experimental results concluded from the synthetic data, platform data and real clinical data demonstrate that the proposed model evidently improves the resolution of small angle crossing fibers within voxel, meanwhile the noise is effectively restrained. Compared with the reconstruction algorithms based on other models, the proposed algorithm can reflect the true connection of brain neural tissue in vivo more accurately.



Published: 01 April 2015
CLC:  TP 391  
Cite this article:

LI Zhi-juan, FENG Yuan-jing, NIU Yan-peng, LI Rong, YE Feng. Fiber reconstruction algorithm based on discrete spherical deconvolution. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 987-993.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.06.004     OR     http://www.zjujournals.com/eng/Y2014/V48/I6/987


基于离散球面反卷积的白质纤维重构算法

为了解决基于扩散张量成像(DTI)的跟踪过程难以刻画脑白质内复杂纤维结构的问题,提出一种基于离散球面反卷积的确定性跟踪算法.该算法采用离散纤维方向密度函数建立球面反卷积模型,解除对连续球面函数模型的依赖,获得高角度分辨率识别;借助球面高斯函数拟合以补偿离散误差,并在此基础上实现流线型白质纤维跟踪.合成数据、仿真数据和实际临床数据表明:该模型能显著提高体素内小角度交叉纤维的分辨率,并有效抑制噪声.相比于基于其他模型的重构算法,该算法能够更准确地反映活体脑神经组织的真实连接情况.

[1] 米博会.基于DTI的脑白质神经纤维跟踪技术及其运用[D].天津: 天津大学, 2008.
MI Bo-hui. White matter fiber tracking and application in diffusion tensor imaging[D]. Tianjin: Tianjin University, 2008.
[2] EHRENS T E, JOHANSEN B H, JBABDI S. Probabilistic diffusion tractography with multiple fiber orientations: what can we gain?[J]. NeuroImage, 2007, 34(1): 144-155.
[3] DESCOTEAUX M, ANGELINO E, FITZGIBBINS S, et al. Regularized, fast, and robust analytical Q-ball imaging[J]. Magnetic Resonance in Medicine, 2007, 58(3): 497-510.
[4] CHENG Jian, GHOSH A, DERICHE R, et al. Model-free, regularized, fast, and robust analytical orientation distribution function estimation [C] ∥MICCAI 2010. Berlin: Springer-Verlag, 2010: 648-656.
[5] AMES G M, MARTHA E S, YOGESH R. Filtered multi-tensor tractography [J]. IEEE Transactions on Medical Imaging, 2010, 29(9): 1664-1675.
[6] 李蓉,冯远静,邵开来等.磁共振扩散高阶张量成像的脑白质纤维微结构模型及特征提取算法[J].中国生物医学工程学报,2012, 31(3): 51-59.
LI Rong, FENG Yuan-jing, SHAO kai-lai, et al. Any order tensor imaging model feature extraction algorithm based on iterative search [J]. Journal of Chinese Biomedical Engineering, 2012, 31(3): 51-59.
[7] TOUNNIER J D, CALAMANTE F, GADIAN D G, et al. Direct estimation of the fiber orientation density function from diffusion weighted MRI data using spherical deconvolution [J]. NeuroImage, 2004, 23(3): 1176-1185.
[8] ANDERSON A W. Measurement of fiber orientation distributions using high angular resolution diffusion imaging[J]. Magnetic Resonance in Medicine, 2005, 54: 11941206.
[9] TOUNNIER J D, CALAMANT F, CONNELY A, et al. Robust determination of the fibre orientation distribution indiffusion MRI: Non-negativity constrained super-resolved spherical deconvolution [J]. NeuroImage, 2007, 35(4): 1459-1472.
[10] PATEL V, SHI Y, THOMPSON P M, et al. Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions [J]. Neuroimage, 2010, 51(3): 1071-1081.
[11] SODEMAN O, JONSSO B. Restricted diffusion in cylindrical geometry [J]. Magnetic Resonance, Series A, 1995, 117(1): 94-97.
[12] AGANJ I, LENGLET C, JAHANSHAD N, et al. A hough transform global probabilistic approach to multiple subject diffusion MRI tractography[J]. Medical Image Analysis, 2011, 15(4): 414-425.

[1] HE Xue-jun, WANG Jin, LU Guo-dong, LIU Zhen-yu, CHEN Li, JIN Jing. 3D head portrait sculpture by industrial robot based on triangular mesh slicing and collision detection[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1104-1110.
[2] WANG Hua, HAN Tong-yang, ZHOU Ke. KeyGraph-based community detection algorithm for public security intelligence[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1173-1180.
[3] YOU Hai-hui, MA Zeng-yi, TANG Yi-jun, WANG Yue-lan, ZHENG Lin, YU Zhong, JI Cheng-jun. Soft measurement of heating value of burning municipal solid waste for circulating fluidized bed[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(6): 1163-1172.
[4] BI Xiao-jun, WANG Jia-hui. Teaching-learning-based optimization algorithm with hybrid learning strategy[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(5): 1024-1031.
[5] WANG Liang, YU Zhi-wen, GUO Bin. Moving trajectory prediction model based on double layer multi-granularity knowledge discovery[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 669-674.
[6] LIAO Miao, ZHAO Yu-qian, ZENG Ye-zhan, HUANG Zhong-chao, ZHANG Bing-kui, ZOU Bei-ji. Automatic segmentation for cell images based on support vector machine and ellipse fitting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 722-728.
[7] MU Jing-jing, ZHAO Xin-yue, HE Zai-xing, ZHANG Shu-you. Contour reconstruction of overlapped bubbles based on concave-convex transformation and circle fitting[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 714-721.
[8] HUANG Zheng-yu, JIANG Xin-long, LIU Jun-fa, CHEN Yi-qiang, GU Yang. Fusion feature based semi-supervised manifold localization method[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 655-662.
[9] JIANG Xin-long, CHEN Yi-qiang, LIU Jun-fa, HU Li-sha, SHEN Jian-fei. Wearable system to support proximity awareness for people with autism[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(4): 637-647.
[10] DAI Cai-yan, CHEN Ling, LI Bin, CHEN Bo-lun. Sampling-based link prediction in complex networks[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 554-561.
[11] LIU Lei, YANG Peng, LIU Zuo-jun. Locomotion-Mode recognition using multiple kernel relevance vector machine[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 562-571.
[12] GUO Meng-li, DA Fei-peng, DENG Xing, GAI Shao-yan. 3D face recognition based on keypoints and local feature[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(3): 584-589.
[13] WANG Hai jun, GE Hong juan, ZHANG Sheng yan. Fast object tracking algorithm via kernel collaborative presentation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 399-407.
[14] ZHANG Ya nan, CHEN De yun, WANG Ying jie, LIU Yu peng. Incremental graph pattern matching based dynamic recommendation method for cold-start user[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 408-415.
[15] LIU Yu peng, QIAO Xiu ming, ZHAO Shi lei, MA Chun guang. Deep combination of large-scale features in statistical machine translation[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(1): 46-56.