Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Count adaptive clustering algorithm based on multiple-chromosome evolution
NI Guang-yi, ZHANG Xiao-can, SU Cheng, YU Wei-bin
Department of Geoscience, Zhejiang University, Hangzhou 310027, China
Download:   PDF(1646KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

 Two well-known problems exist when genetic algorithms (GAs) applied to data clustering: the “content-sensitivity” problem which restrains efficiency, and how to determine the count of clusters without prior knowledge. In order to resolve these problems, by fully researching on the nature of how “context-sensitivity” affects efficiency and convergency, a multiple chromosome genetic clustering algorithm was proposed, which takes the advantage of the evolvement of multiple chromosome creatures. The algorithm improved the efficiency and convergency, by making use of the interrelationship among all clusters while evolving, moreover, by this way the count of cluster is variable in each individual. To control the count of clusters, fitness functions which based on distribution fitting was defined, which can provide decision information without prior knowledge. The comparison of the algorithm with the K genetic algorithm (KGA) and the expectation-maximization (EM) algorithm and the results of experiments on remote sensing image show promising results on efficiency and convergency with cluster count automatically adjusted.



Published: 01 April 2015
CLC:  TP 301.6  
Cite this article:

NI Guang-yi, ZHANG Xiao-can, SU Cheng, YU Wei-bin. Count adaptive clustering algorithm based on multiple-chromosome evolution. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 980-986.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.06.003     OR     http://www.zjujournals.com/eng/Y2014/V48/I6/980


基于多染色体演化的自适应类别数聚类方法

为了解决在遗传算法聚类分析中影响算法效率的互相关性问题以及在没有先验知识的情况下确定类别数问题,在充分分析基因的互相关性对算法效率和收敛性影响的基础上,借鉴多染色体生物的进化特性,提出多染色体取代传统单染色体的遗传算法.算法在进化过程中充分利用类簇之间的相互关系,提高了遗传算法的效率和收敛能力,并且在遗传过程中类别数量可变;为了明确地控制类别数,采用基于分布拟合的适应度函数,为在没有先验知识的情况下确定类别数提供了分析依据.通过与K均值的遗传算法(KGA)、最大期望算法(EM算法)的对比分析以及针对遥感影像的实验表明,该遗传算法在对类别数能进行自适应控制的基础上,在效率和收敛性上也都能取得较好的效果.

[1] FALKENAUER E. Genetic Algorithms and Grouping Problems[M]. New York, USA: Wiley, 1998.
[2] HRUSCHKA E R, CAMPELLO R J G B, FREITAS A A, et al. A survey of evolutionary algorithms for clustering[J]. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 2009, 39(2): 133-155.
[3] FRNTI P, KIVIJRVI J, KAUKORANTA T, et al. Genetic algorithms for large-scale clustering problems[J]. The Computer Journal, 1997, 40(9): 547-554.
[4] LU Y, LU S, FOTOUHI F, et al. FGKA: A fast genetic k-means clustering algorithm[C] ∥ Proceedings of the 2004 ACM Symposium on Applied Computing. New York, USA: ACM, 2004: 622-623.
[5] KRISHNA K, MURTY M N. Genetic K-means algorithm[J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 1999, 29(3): 433-439.
[6] SEO H S, OH S J, LEE C W. Evolutionary genetic algorithm for efficient clustering of wireless sensor networks[C]∥ Consumer Communications and Networking Conference, 2009. CCNC 2009. 6th IEEE. Las Vegas, USA: IEEE, 2009: 15.
[7] HRUSCHKA E R, CAMPELLO R J G B, DE CASTRO L N. Evolving clusters in gene-expression data[J]. Information Sciences, 2006, 176(13): 1898-1927.
[8] ALVES V S, CAMPELLO R J G B, HRUSCHKA E R. Towards a fast evolutionary algorithm for clustering[C]∥ Evolutionary Computation, 2006. CEC 2006. IEEE Congress on. Vancouver, Canada: IEEE, 2006: 1776-1783.
[9] HRUSCHKA E R, EBECKEN N F F. A genetic algorithm for cluster analysis[J]. Intelligent Data Analysis, 2003, 7(1): 15-25.
[10] HANDL J, KNOWLES J. An evolutionary approach to multiobjective clustering[J]. Evolutionary Computation, IEEE Transactions on, 2007,11(1): 56-76.
[11] 赖玉霞, 刘建平, 杨国兴. 基于遗传算法的 K 均值聚类分析[J]. 计算机工程, 2008, 34(20): 200-202.
LAI Yu-xia, LIU Jian-ping, YANG Guo-xing. K-Means clustering analysis based on genetic algorithm[J]. Computer Engineering, 2008, 34(20): 200-202.
[12] MAULIK U, BANDYOPADHYAY S. Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2003, 41(5): 1075-1081.
[13] KWEDLO W. A clustering method combining differential evolution with the K-means algorithm[J]. Pattern Recognition Letters, 2011, 32(12): 1613-1621.
[14] 何宏, 谭永红. 一种基于动态遗传算法的聚类新方法[J]. 电子学报, 2012, 40(2): 254-259.
HE Hong, TAN Yong-hong. A novel clustering method based on dynamic genetic algorithm[J]. Acta Electronica Sinica, 2012, 40(2): 254-259.
[15] BANDYOPADHYAY S, MAULIK U. An evolutionary technique based on K-means algorithm for optimal clustering in RN[J]. Information Sciences, 2002, 146(1): 221-237.
[16] 钟将,吴中福,吴开贵,等.基于人工免疫网络的动态聚类算法[J].电子学报,2004, 32(8): 1268-1272.
ZHONG Jiang, WU Zhong-fu, WU Kai-gui, et al. A novel dynamic clustering algorithm based on artificial immune network[J]. Acta Electronica Sinica, 2004, 32(8): 1268-1272.
[17] BANDYOPADHYAY S, MAULIK U. Genetic clustering for automatic evolution of clusters and application to image classification[J]. Pattern Recognition, 2002, 35(6): 1197-1208.
[18] HORTA D, NALDI M, CAMPELLO R, et al. Evolutionary fuzzy clustering: an overview and efficiency issues[M]∥ Foundations of Computational Intelligence Volume 4. Berlin Heidelberg: Springer,2009: 167-195.
[19] PLACKETT R L. Karl Pearson and the chi-squared test[EB/OL]. \[2012-12-19\]. htpp:∥as. wiley. com/wiley CDA/Wiley Title/productCd-INSR. html. 1983: 59-72.
[20] STORN R, PRICE K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[21] DEMPSTER A P, LAIRD N M, RUBIN D B. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statstical Society. Series B (Methodological), 1977,39(1): 138.
[22] FRANK A, ASUNCION A. UCI machine learning repository [DB/OL]. [2013-02-23].http: ∥archive.ics.uci.edu/ml/datasets/Iris.
[23] NALDI M C, CAMPELLO R, HRUSCHKA E R, et al. Efficiency issues of evolutionary k-means[J]. Applied Soft Computing, 2011, 11(2): 1938-1952.

[1] DONG Li yan, ZHU Qi, LI Yong li. Model combination algorithm based on consensus maximization[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(2): 416-421.
[2] MIAO Feng, XIE An-huan, WANG Fu-an, YU Feng, ZHOU Hua. Method for multi-stage alternative grouping parallel machines scheduling problem[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(5): 866-872.
[3] KONG Yong-qi, PAN Zhi-geng. Segmentation algorithm of recessed image based on vector field of suction[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(6): 1024-1033.
[4] LIU Jia-hai, YANG Mao-lin, LEI Hang, LIAO Yong. Multicore real-time task allocation algorithms with shared resource constraints[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2014, 48(1): 113-117.
[5] ZHAO Shi-kui, FANG Shui-liang, GU Xin-jian. Genetic algorithm with new initialization mechanism for flexible job shop scheduling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2013, 47(6): 1022-1030.
[6] ZHANG Jun-chao, YUE Mao-xiong, LIU Hua-feng. Dynamic PET image reconstruction with Geometrical structure
prior constraints
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(6): 961-966.
[7] LIU Yi, LI Ping, GAO Zeng-liang. Quality prediction of hot metal in blast furnace using improved
support vector regression
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(5): 830-836.
[8] YU Hai-qing, LIU Yi, CHEN Kun, JI Jun1, LI Ping. Robust recursive kernel learning modeling method with
application to blast furnace
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(4): 705-711.
[9] FANG Shui-liang, YAO Yan-fei, ZHAO Shi-kui. Improved genetic algorithm for flexible job shop scheduling[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2012, 46(4): 629-635.
[10] LIU Jia-hai, YANG Mao-lin. Fair scheduling algorithm on multi-core platforms based platforms[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(9): 1566-1570.
[11] XU Jing-hua, ZHANG Shu-you, YI Guo-dong, TU Li, GUANG Yao. Object variation oriented kinematics optimization design
for manipulator
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2011, 45(2): 209-216.
[12] NI He, Cheng-Gang, SUN Feng-Rui. Adaptive hybrid evolutionary modeling method and its application[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(8): 1490-1495.
[13] DAI Wen-Zhan, XIONG Wei, YANG Ai-Ping. Grey modeling based on cot (xα) transformation
and background value optimization
[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(7): 1368-1372.
[14] CHEN Kun, LIU Yi, WANG Hai-Qing, et al. Adaptive algorithm for recursive identification of Hammerstein systems[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2010, 44(1): 99-103.
[15] YANG Ke, LUO Qiong, SHI Jiao-Ying. Application of graphics processors to database technologies[J]. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2009, 43(8): 1349-1360.