Please wait a minute...
J4  2014, Vol. 48 Issue (1): 0-00    DOI: 10.3785/j.issn.1008-973X.2014.02.000
    
Optimal design on shoulder joint of upper limb exoskeleton robot for motor rehabilitation and system application
YAN Hua, YANG Can-jun, CHEN Jie
State Key Laboratory of Fluid Power Transmission and Control,Zhejiang University, Hangzhou 310027, China
Download:   PDF(3066KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Considering the low muscle power in post-stroke patients at the early stage, who need an intensive and repetitive movement training to regain their motor abilities, this work presentsed an exoskeleton system with three training modalities derived from traditional therapy, i.e. mirror training, teaching training and movement repetitive training. In mirror training, patient guides the impaired limb using the unaffected one to improve the voluntary motor coordination. During teaching training, the therapist wears master exoskeleton and guides one or more patients in slaver exoskeletons simultaneously. Movement repetitive training provides continuous movement training to patients, during which the trajectory is specified by the therapist. Based on the same serial kinematic model of the upper limb with seven degrees-of-freedom (DOF), the exoskeleton system comprises two subsystems including a master exoskeleton and a slaver exoskeleton functioning as orientation detection and motion assistance respectively. The mechanical shoulder joint was optimized to match the physiological motion of anatomical center of rotation (CoR) adaptively and improves the compatibility of human-machine kinematic chain. The results of clinical trials verified the ability of the exoskeleton system to provide safe and reliable movement therapy.



Published: 01 January 2014
CLC:  TH 137  
Cite this article:

YAN Hua, YANG Can-jun, CHEN Jie. Optimal design on shoulder joint of upper limb exoskeleton robot for motor rehabilitation and system application. J4, 2014, 48(1): 0-00.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2014.02.000     OR     http://www.zjujournals.com/eng/Y2014/V48/I1/0


上肢运动康复外骨骼肩关节优化设计与系统应用

针对脑卒中患者早期肌肉力量严重不足,需要密集重复性运动康复训练的情况,设计一套外骨骼机器人系统,并结合传统运动疗法提出镜像训练、示教训练和轨迹重复训练等训练模式.镜像训练通过健肢引导患肢运动,促使患者自主训练;示教训练由理疗师引导患肢运动,实现“一对多”分布式训练;轨迹重复训练能够按照理疗师指定的特定轨迹患肢进行动作重复训练.外骨骼机器人系统包含负责位姿检测的主外骨骼和负责动作辅助的从外骨骼2个子系统,两者具有相同的七自由度上肢串联运动学模型.根据人体肩关节旋转中心生理运动形式优化设计外骨骼自适应肩关节,提高了人机运动链相容性.临床实验结果表明:外骨骼系统能够为脑卒中患者提供安全可靠的运动训练.

[1] 王文志.中国脑血管病防治研究现状和发展方向[J].中国现代神经疾病杂志,2011, 11(2): 134-137.

WANG Wen-zhi. The present status and direction of prevention, treatment and research on cerebrovascular diseases in China [J]. Chinese Journal of Contemporary Neurology and Neurosurgery, 2011, 11(2): 134-137.


[2] 王伊龙,王拥军,吴敌,等.中国卒中防治研究现状[J].中国卒中杂志,2007, 2(1): 121-126.

WANG Yi-long, WANG Yong-jun, WU Di, et al. Special forum on current status of stroke in China [J]. Chinese Journal of Stroke, 2007, 2(1): 121-126.

[3] 杨灿军,陈鹰,路甬祥.人机一体化智能系统理论及应用研究探索[J].机械工程学报,2000, 36(6): 42-47.

YANG Can-jun, CHEN Ying, LU Yong-xiang. Study on the humanchine intelligent system and its application [J]. Chinese Journal of Mechanical Engineering, 2000, 36(6): 42-47.

[4] LO A C, GUARINO P D, RICHARDS L G, et al. Robot-assisted therapy for long-term upper-limb impairment after stroke [J]. New England Journal of Medicine, 2010, 362(19): 1772-1783.

[5] 张佳帆.基于柔性外骨骼人机智能系统基础理论及应用技术研究[D].杭州: 浙江大学, 2009.

ZHANG Jia-fan. Exoskeleton based man manchine intelligent system and its application [D]. Hangzhou: Zhejiang University, 2009.

[6] PONS J L. Wearable robots: biomechatronic exoskeletons [M]. Atrium: Wiley, 2008.

[7] MIHELJ M, NEF T, RIENER R. ARMin II-7 DoF rehabilitation robot: mechanics and kinematics [C]∥ Proceedings of the 2007 IEEE International Conference on Robotics and Automation. New York: IEEE, 2007: 4120-4125.

[8] PERRY J C, ROSEN J, BURNS S. Upper-limb powered exoskeleton design [J]. Mechatronics, IEEE/ASME Transactions on, 2007, 12(4): 408417.

[9] AGRAWAL S K, DUBEY V N, GANGLOFF J J, et al. Design and optimization of a cable driven upper arm exoskeleton [J]. Journal of Medical Devices, 2009, 3(3): 298-300.

[10] CALDWELL D G, TSAGARAKIS N, KOUSIDOU S, et al. " Soft" exoskeletons for upper and lower body rehabilitation design, control and testing [J]. International Journal of Humanoid Robotics, 2007, 4(3): 549-574.

[11] GOPURA R, KIGUCHI K, LI Y, SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control [C]∥ Intelligent Robots and Systems, IEEE/RSJ International Conference on. St. Louis: IEEE, 2009: 1126-1131.

[12] CEMPINI M, DE ROSSI S M M, LENZI T, et al. Self-alignment mechanisms for assistive wearable robots: a kinetostatic compatibility method [J]. Robotics, IEEE Transactions on, 2013, 29(1): 236-250.

[13] STIENEN A H A, HEKMAN E E G, VAN DER HELM F C T, et al. Self-aligning exoskeleton axes through decoupling of joint rotations and translations [J]. Robotics, IEEE Transactions on, 2009, 25(3): 628-633.

[14] BALL S J, BROWN I E, SCOTT S H, et al. MEDARM: a rehabilitation robot with 5DOF at the shoulder complex [C]∥ Advanced Intelligent Mechatronics, IEEE/ASME International Conference on. ETH Zurich: IEEE, 2007: 251-256.

[15] REN Y, PARK H S, ZHANG L Q. Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation [C]∥ International Conference on Rehabilitation Robotics. Kyoto: IEEE, 2009: 761-765.

[16] NEF T, GUIDALI M, RIENER R. ARMin III-arm therapy exoskeleton with an ergonomic shoulder actuation [J]. Applied Bionics and Biomechanics, 2009, 6(2): 127-142.

[17] KWAKKEL G, WAGENAAR R C, TWISK J W, et al. Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial [J]. The Lancet, 1999, 354(9174): 191-196.

[18] BEER R F, DEWALD J P A, RYMER W Z. Deficits in the coordination of multijoint arm movements in patients with hemiparesis: evidence for disturbed control of limb dynamics [J]. Experimental Brain Research, 2000, 131(3): 305-319.

[19] POPPEN N and WALKER P. Normal and abnormal motion of the shoulder [J]. Journal of Bone and Joint Surgery American, 1976, 58(2): 195-201.

[20] CAMOMILLA V, CEREATTI A, VANNOZZI G, et al. An optimized protocol for hip joint centre determination using the functional method [J]. Journal of Biomechanics, 2006, 39(6): 1096-1106.

[21] WU G, VAN DER HELM F C T, VEEGER H, et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: shoulder, elbow, wrist and hand [J]. Journal of Biomechanics, 2005, 38(5): 981-992.

[22] MORE J. The Levenberg-Marquardt algorithm: implementation and theory [J]. Numerical Analysis, 1978, 3(6): 105-116.

[23] COMMITTEE M R C N I, RIDDOCH G. Aids to the investigation of peripheral nerve injuries [M]. London: His Majesty’s Stationery Office, 1943.

[24] BURGAR C G, LUM P S, SHOR P C, et al. Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience [J]. Journal of Rehabilitation Research and Development, 2000, 37(6): 663-674.

[25] JETTE D U, LATHAM N K, SMOUT R, et al. Physical therapy interventions for patients with stroke in in-patient rehabilitation facilities [J]. Physical Therapy, 2005, 85(3): 238-248.

[26] FRENCH B, THOMAS L H, LEATHLEY M J, et al. Repetitive task training for improving functional ability after stroke [J]. Stroke, 2007, 40(1): 98-99.

[1] DING Chuan, DING Fan, ZHOU Xing, MAN Zai-peng, YANG Can-jun. Design and comparative experimental study of novel pressure-resistant oil-immersed proportional actuator[J]. J4, 2014, 48(3): 451-455.
[2] SONG Yue-chao, XU Bing, YANG Hua-yong, ZHANG Jun-hui. Modified practical approximate method for testing source flow of  piston pump[J]. J4, 2014, 48(2): 200-205.
[3] MAN Zai-peng,DING Fan,DING Chuan,LIU Shuo,HUANG Ting-feng. Development and research overview on impulse test of hydraulic hose[J]. J4, 2014, 48(1): 21-28.
[4] SHI Hu, YANG Hua-yong, GONG Guo-fang, HOU Dian-qing. Definition and evaluation method for compliance of thrust hydraulic system for shield tunneling machine[J]. J4, 2013, 47(8): 1444-1449.
[5] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Design of new propulsion system of shield tunneling machine based on compliance characteristics [J]. J4, 2013, 47(7): 1287-1292.
[6] WEI Jian-hua, GUO Kai, XIONG Yi. Synchronized motion control for multi-axis electro-hydraulic system of large equipment[J]. J4, 2013, 47(5): 755-760.
[7] SHI Hu, YANG Hua-yong, GONG Guo-fang, WANG Lin-tao. Key technologies of shield tunneling machine and present  status and prospect of test rigs for tunneling simulation [J]. J4, 2013, 47(5): 741-749.
[8] HOU Dian-qing, GONG Guo-fang, SHI Hu, WANG Lin-tao. Compliance characteristics of propulsion system of
shield tunneling machine under sudden load
[J]. J4, 2013, 47(3): 522-527.
[9] ZHU Xu, WEI Jian-hua, FANG Jin-hui. Dynamic characteristics of pilot-operated electro-hydraulic
flow distribution system
[J]. J4, 2013, 47(2): 193-200.
[10] ZHANG Yan-ting, QU Ying-feng, LIU Zhen-dong, MA Jiang-tao. Design of swing device for crown-block heave compensation system[J]. J4, 2012, 46(12): 2268-2273.
[11] FANG Jin-hui, WEI Jian-hua, KONG Xiao-wu. Synchronous control strategy for paralleled servo valves[J]. J4, 2012, 46(6): 1054-1059.
[12] DU Heng, WEI Jian-hua, FENG Rui-lin. Modeling, simulation and experimental research
on pressure tracking valve
[J]. J4, 2012, 46(6): 1034-1040.
[13] MAN Jun , DING Fan , LI Qi-peng , DA Jing , SHAO Sen-yin. Study of high-pressure high-speed on-off solenoid using
permanent magnet shield
[J]. J4, 2012, 46(2): 309-314.
[14] GUAN Cheng, XU Xiao, LIN Xiao, WANG Shou-hong. Recovering system of swing braking energy in hydraulic excavator[J]. J4, 2012, 46(1): 142-149.
[15] HUANG Jia-hai,QIU Min-xiu,FANG Wen-min. Heat transfer in the gap of friction pairs in hydroviscous drive[J]. J4, 2011, 45(11): 1934-1940.