Please wait a minute...
J4  2013, Vol. 47 Issue (8): 1457-1462    DOI: 10.3785/j.issn.1008-973X.2013.08.020
    
Working characteristics of Stirling-type thermoacoustic engine connected with linear alternator
SUN Da-ming, WANG Kai, LOU Ping, ZHAO Yi-tao,ZHANG Xue-jun, QIU Li-min
Institute of Refrigeration and Cryogenic Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Theoretical and experimental investigations on the effects of alternator load and acoustic transfer tube on the performance of a Stirling-type thermoacoustic engine were conducted to study the coupling laws between the linear alternator load and the engine. A self-designed experimental system of a Stirling-type thermoacoustic engine driving single linear alternator was constructed. The working characteristics of the system with and without the linear alternator load were investigated by controlling the ball valve between the engine and the alternator, and the effects of acoustic transfer component on the output characteristics of the system were studied by changing the length of the acoustic transfer tube. The results show that the alternator load makes the onset and the damping temperatures higher while the frequency rarely changed. The optimization of the transfer tube between the engine and the alternator load improves the output characteristics of the engine, amplifies the output pressure amplitude, and increases the output electrical power of the alternator. Furthermore, the computational results also demonstrate that the optimization of the working frequency matching will effectively improve the performance of the thermoacoustic generator system.



Published: 01 August 2013
CLC:  TK 11  
Cite this article:

SUN Da-ming, WANG Kai, LOU Ping, ZHAO Yi-tao,ZHANG Xue-jun, QIU Li-min. Working characteristics of Stirling-type thermoacoustic engine connected with linear alternator. J4, 2013, 47(8): 1457-1462.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.08.020     OR     http://www.zjujournals.com/eng/Y2013/V47/I8/1457


斯特林型热声发动机驱动直线发电机的工作特性

为探索发电机负载与热声发动机之间的耦合规律,开展发电机负载和声学传输管对斯特林型热声发动机工作特性影响的理论与实验研究.自行搭建一套斯特林型热声发动机驱动单直线发电机的实验系统,通过控制发动机与发电机间球阀的开关考察发动机在有无负载情况下的工作特性,通过改变声学传输管长度考察声学传输部件对发动机输出特性的影响.研究表明,发电机负载使系统起消振温度提高,而接入发电机负载前后系统工作频率基本不变;通过优化声学传输部件可有效改善发动机的输出特性,提高发动机的输出压力振幅和发电机输出电功;计算结果表明,改善频率匹配可大幅提高热声发动机驱动发电机系统的性能.

[1] QIU L M, SUN D M, YAN W L, et al. Investigation on a thermoacoustically driven pulse tube cooler working at 80 K [J]. Cryogenics, 2005, 45 (5): 380-385.

[2] TANG K, HUANG Z J, JIN T, et al. Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier [J]. Journal of Zhejiang University Sciencea, 2008 (9): 79-87.

[3] YU G Y, LUO E C, DAI W. Advances in a 300Hz thermoacoustic cooler system working within liquid nitrogen temperature range [J]. Cryogenics, 2010, 50 (8): 472-475.

[4] BACKHAUS S, TWARD E, PETACH M. Traveling-wave thermoacoustic electric generator [J]. Applied Physics Letters, 2004, 85 (6): 1085-1087.

[5] LUO E C, WU Z H, DAI W, et al. A 100 W-class traveling-wave thermoacoustic electricity generator [J].Chinese Science Bulletin, 2008, 53 (9): 1453-1456.

[6] WU Z H, MAN M, LUO E C, et al. Experimental investigation of a 500 W traveling-wave thermoacoustic electricity generator [J]. Chinese Science Bulletin, 2011, 56 (19): 1975-1977.

[7] DAI W, LUO E C, HU J Y, et al. A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier [J]. Chinese Science Bulletin, 2005, 50 (18): 2112-2114.

[8] 王波,孙大明,邱利民,等.可大幅提高热声发动机压比的二级声压放大器[J].浙江大学学报:工学版,2008, 42 (9): 1545-1548.

WANG Bo, SUN Da-ming, QIU Li-min, et al. Two-stage cascade acoustic amplifier capable of remarkably increasing pressure ratio of thermoacoustic engine [J]. Journal of Zhejiang Universtiy: Engineering Science, 2008, 42 (9): 1545-1548.

[9] SUN D M, QIU L M, WANG B, et al. Novel Helmholtz resonator used to focus acoustic energy of thermoacoustic engine [J]. Applied Thermal Engineering, 2009, 29 (5-6): 945-949.

[10] CLARK J P, WARD W C, SWIFT G W. Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC) [J]. The Journal of the Acoustical Society of America, 2007, 122(5): 3014-3014.

[11] SUN D M, QIU L M, ZHANG W, et al. Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude [J]. Energy Conversion and Management, 2005, 46 (2): 281-291.

[12] 赖碧翚,邱利民,李艳锋,等.基于热声网络理论的驻波热声发动机起振模拟[J].浙江大学学报:工学版, 2011, 45 (6): 1130-1135.

LAI Bi-hui, QIU Li-min, LI Yan-feng, et al. Simulation of the onset process of standing wave thermoacoustic engine using thermoacoustic network theory [J]. Jounal of Zhejiang Universtiy: Engineering Science, 2011, 45 (6): 1130-1135.

[13] 孙大明,邱利民,谭永翔,等.影响热声发动机工作频率的因素[J].低温工程, 2006, (04): 24-27.

SUN Da-ming, QIU Li-min, TAN Yong-xiang, et al. Factors of influencing working frequency in thermoacoustic engines [J]. Cryogenics (Chinese), 2006 (04): 24-27.

[14] 孙大明,邱利民,陈国邦,等.以氦气为工质的行波热声发动机研究[J].太阳能学报,2004,25 (6): 845-849.

SUN Da-ming, QIU Li-min, CHEN Guo-bang, et al. Investigation on a traveling-wave thermoa-coustic engine with helium as working gas [J]. Acta Energiae Solaris Sinica, 2004, 25 (6): 845-849.

[1] QU Rui-yang,WU Xue-cheng,GAO Xiang,WU Ying-chun,CHEN Ling-hong,Gréhan G. Numerical simulation of particle reconstruction 
in digital holographic microscopy
[J]. J4, 2012, 46(9): 1647-1653.