Please wait a minute...
J4  2013, Vol. 47 Issue (2): 319-324    DOI: 10.3785/j.issn.1008-973X.2013.02.020
    
Preparation of self-healing α-Al2O3 film on rapid quenching
Al-Cr alloy by thermal oxidation at low temperature
CAI Jun, ZHANG Zhou-yong, LING Guo-ping
Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To prepare self-healing α-Al2O3 film below 750  ℃, the oxidation of rapid quenching Al-Cr alloy with Cr contents of 8 % and 18 % at 670~720  ℃ in air was studied. The oxide film was analyzed by XRD, SEM, TEM and EDS. The results show that the w(Cr)=8 % sample is one-phase solid solution of Cr in Al, while the w(Cr)=18 % sample is constituted of Al and Al45Cr7 phases. A compact α-Al2O3 film is prepared at 720  ℃ by the oxidation of Al-Cr alloy and, the rapid quenching alloy substrate has no obvious influence on the morphologies and phase constitutions of the oxide films. A few Cr is found in the α-Al2O3 film when the Cr content is larger. Moreover, XRD result shows that coarse surface facilitates the formation of the α-Al2O3.



Published: 01 February 2013
CLC:  TG 166.3  
Cite this article:

CAI Jun, ZHANG Zhou-yong, LING Guo-ping. Preparation of self-healing α-Al2O3 film on rapid quenching
Al-Cr alloy by thermal oxidation at low temperature. J4, 2013, 47(2): 319-324.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2013.02.020     OR     http://www.zjujournals.com/eng/Y2013/V47/I2/319


急冷Al-Cr合金低温氧化制备自修复α-Al2O3薄膜

为了在750 ℃下制备自修复α-Al2O3薄膜,对Cr质量分数为8 %和18 %的急冷Al-Cr合金在大气气氛中670~720  ℃下进行氧化,并采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和能谱分析(EDS)对氧化膜进行分析.结果表明,Cr质量分数为8 %的急冷Al-Cr合金主要由Cr固溶于Al的单相组织构成,质量分数为18 %的急冷Al-Cr合金则为Al上分布Al45Cr7的双相组织.急冷Al-Cr合金可以在720  ℃的低温下通过氧化制备出薄且致密的α-Al2O3膜,合金的基体组织对氧化结果无明显影响,但Cr质量分数较高时,α-Al2O3膜中固溶有少量的Cr.此外,XRD检测结果表明,试样的表面粗糙度有利于获得α-Al2O3.

[1] 刘永杰,刘忆,董闯,等.Al2O3薄膜的应用与制备[J].真空与低温,2002,8(4): 236-240.
LIU Yong-jie, LIU Yi, DONG Chuang, et al. Application and preparation of Al2O3 thin films [J]. Vacuum & Cryogenics, 2002, 8 (4): 236-240.
[2] 曾祥才,宋洪刚,吴春涛,等.复合化学气相沉积法制备厚膜α-Al2O3涂层硬质合金刀具[J].工具技术,2010,44(2): 44-46.
ZENG Xiang-cai, SONG Hong-gang, WU Chuntao, et al. Preparation of WC based on cutting materials with thick αAl2O3 coating by MHTCVD [J]. Tool Engineering, 2010, 44 (2): 44-46.
[3] SMITH D L, KONYS J, MUROGA T, et al. Development of coatings for fusion power applications [J]. Journal of Nuclear Materials, 2002, 307-311: 1314-1322.
[4] ANDERSSON J M, WALLIN E, HELMERSSON U, et al. Phase control of Al2O3 thin films grown at low temperatures [J]. Thin Solid Films, 2006, 513: 57-59.
[5] FALLQVIST M, OLSSON M, RUPPI S. Abrasive wear of textureControlled CVD α-Al2O3 coatings [J]. Surface & Coatings Technology, 2007, 202: 837-843.
[6] FU Qiang, CAO Chuan-bao, ZHU He-sun. Preparation of alumina films from a new Sol-Gel route [J]. Thin Solid Films, 1999, 348: 99-102.
[7] ROMMERSKIRCHEN I, ELTESTER B, GRABKE H J. Oxidation of βFeAl and FeAl alloys [J]. Materials and Corrosion, 1996, 47: 646-649.
[8] GRABKE H J. Oxidation of NiAl and FeAl [J]. Intermetallics, 1999, 7: 1153-1158.
[9] PINT B A, MOSER J L, TORTORELLI P F. Investigation of Pb-Li compatibility issues for the dual coolant blanket concept [J]. Journal of Nuclear Materials, 2007, 367370: 1150-1154.
[10] SERRA E, GLASBRENNER H, PERUJO A. Hot-Dip aluminium deposit as a permeation barrier for MANET steel [J]. Fusion Engineering and Design, 1998, 41: 149-155.
[11] MURAKAMI K, NISHIDA N, OSAMURA K, et al. Aluminization of high purity iron by powder liquid coating [J]. Acta Materialia, 2004, 52: 1271-1281.
[12] LIU H B, TAO J, XU J, et al. Microstructure characterization of oxidation of aluminized coating prepared by a combined process [J]. Journal of Nuclear Materials, 2008, 378: 134-138.
[13] 黄群英,郁金南,万发荣,等.聚变堆低活化马氏体钢的发展[J].核科学与工程,2004,24(1): 5664.HUANG Qun-ying, YU Jin-nan, WAN Farong, et al. The development of low activation martensitic steels for fusion reactor [J]. Chinese Journal of Nuclear Science and Engineering, 2004, 24(1): 56-64.
[14] STRAND M, SELINDER T I, FIETZKE F, et al. PVD-Al2O3-coated cemented carbide cutting tools [J]. Surface & Coatings Technology, 2004, 188189: 186-192.
[15] LEVIN I, BRANDON D. Metastable alumina polymorphs: crystal structures and transition sequences [J]. Journal of the American Ceramics Society, 1998, 81 (8): 1995-2012.
[16] OH C, TOMANDL G, LEE M, et al. The effect of an added seed on the phase transformation and the powder properties in the fabrication of Al2O3 powder by the Sol-Gel process [J]. Journal of Materials Science, 1996, 31: 5321-5325.
[17] LU Hong-xia, SUN Hong-wei, MAO Ai-xia, et al. Preparation of plagelike nano α-Al2O3 using nano-aluminum seeds by wetchemical methods [J]. Materials Science and Engineering A, 2005, 406: 19-23.
[18] JIN P, XU G, TAZAWA M, et al. Low temperature deposition of α-Al2O3 thin films by sputtering using a Cr2O3 template [J]. Journal of Vacuum Science and Technology A, 2002, 20 (6): 2134-2136.
[19] ZHANG Z G, GESMUNDO F, HOU P Y, et al. Criteria for the formation of protective Al2O3 scales on Fe-Al and Fe-Cr-Al alloys [J]. Corrosion Science, 2006, 48: 741-765.
[20] AIRISKALLIO E, NURMI E, HEINONEN M H, et al. High temperature oxidation of Fe-Al and Fe-Cr-Al alloys: the role of Cr as a chemically active element [J]. Corrosion Science, 2010, 52: 3394-3404.
[21] BENDERSKY L, SCHAEFER R J, BIANCANIELLO F S, et al. Rapidly solidified Al-Cr alloys: structure and decomposition behavior [J]. Journal of Materials Science, 1986, 21: 1889-1896.
[22] 米国发,曾松岩,蒋祖龄,等.快速凝固Al-Cr合金的组织与性能[J].材料研究学报,1994,8(6): 496-500.
MI Guo-fa, CENG Song-yan, JIANG Zu-ling, et al. The microstructure and property of rapidly solidified binary Al-Cr alloys [J]. Chinese Journal of Materials Research, 1994, 8 (6): 496-500.
[23] ZHANG Jing-zhong, JIANG Zhong-hao, JIN De-zhen, et al. Preparation of nano-Cr2-xAlxO3 (x = 0-1) solid solution powders by using citrate-dispersant method [J]. Materials Science and Engineering B, 2010, 172: 33-36.

No related articles found!