[1] 周传典. 高炉炼铁生产技术手册[M]. 北京: 冶金工业出版社, 2002: 188-214.
[2] 刘祥官, 刘芳. 高炉炼铁过程优化与智能控制系统[M]. 北京: 冶金工业出版社, 2003: 1-270.
[3] NOGAMI H, CHU MS, YAGI J. Multidimensional transient mathematical simulator of blast furnace process based on multifluid and kinetic theories [J]. Computers and Chemical Engineering, 2005, 29(11): 2438-2448.
[4] NISHIOKA K, MAEDA T, SHIMIZU M. A threedimensional mathematical modeling of drainage behavior in blast furnace hearth [J]. ISIJ International, 2005, 45(5): 669-676.
[5] 郜传厚, 渐令, 陈积明, 等. 复杂高炉炼铁过程的数据驱动建模及预测算法[J]. 自动化学报, 2009, 35(6): 725-730.
GAO Chuanhou, JIAN Ling, CHEN Jiming, et al. Datadriven modeling and predictive algorithm for complex blast furnace iron [J]. Acta Automatica Sinica, 2009, 35(6): 725-730.
[6] KANO M, NAKAGAWA Y. Databased process monitoring, process control, and quality improvement: Recent developments and applications in steel industry [J]. Computers and Chemical Engineering, 2008, 32(1): 12-24.
[7] GAO Chuanhou, CHEN Jiming, ZENG Jiusun, et al. A chaosbased iterated multistep predictor for blast furnace ironmaking process [J]. American Institute of Chemical Engineers Journal, 2009, 55(4): 947-962.
[8] CHEN J. A predictive system for blast furnaces by integrating a neural network with qualitative analysis [J]. Engineering Applications of Artificial Intelligence, 2001, 14(1): 77-85.
[9] HAO XJ, SHEN FM, DU G, et al. A blast furnace prediction model combining neural network with partial least square regression [J]. Steel Research International, 2005, 76(10): 694-699.
[10] GAO Chuanhou, ZHOU Zhimin, CHEN Jiming. Assessing the predictability for blast furnace system through nonlinear time series analysis [J]. Industrial and Engineering Chemistry Research, 2008, 47(9): 3037-3045.
[11] ZENG Jiusun, GAO Chuanhou. Improvement of identification of blast furnace ironmaking process by outlier detection and missing value imputation [J]. Journal of Process Control, 2009, 19(9): 1519-1528.
[12] 刘学艺, 刘祥官, 王文慧. 贝叶斯网络在高炉铁水硅含量预测中的应用[J]. 钢铁, 2005, 40(3): 17-20.
LIU Xueyi, LIU Xiangguan, WANG Wenhui. Application of bayesian network to predicting silicon content in hot metal [J]. Iron and Steel, 2005, 40(3): 17-20.
[13] 王玉涛, 严其艳, 杨钢. 高炉铁水含硅量的动态神经网络多步预报[J]. 仪器仪表学报, 2006, 27(11): 1448-1451.
WANG Yutao, YAN Qiyan, YANG Gang. Multistep prediction of molten iron silicon content in blast furnace using dynamic neural network [J]. Chinese Journal of Scientific Instrument, 2006, 27(11): 1448-1451.
[14] 王华秋, 廖晓峰, 邹航, 等. 自反馈RBF网络在高炉热状态模型预测中的应用[J]. 系统工程与电子技术, 2008, 30(5): 929-934.
WANG Huaqiu, LIAO Xiaofeng, ZOU Hang, et al. Application of selffeedback RBF NN in prediction model for heat state of blast furnace [J]. Systems Engineering and Electronics, 2008, 30(5): 929-934.
[15] 赵敏. 高炉冶炼过程的复杂性机理及其预测研究[D]. 杭州: 浙江大学, 2008∶13-32.
ZHAO Min. Complexity mechanism and predictive research for BF ironmaking process [D]. Hangzhou: Zhejiang University, 2008: 13-32.
[16] TAYLOR J, CRISTIANINI N. Kernel methods for pattern analysis [M]. Cambridge, UK: Cambridge University Pres, 2004: 38-75.
[17] 渐令, 刘祥官. 支持向量机在铁水硅含量预报中的应用[J]. 冶金自动化, 2005, 29(3): 33-36.
JIAN Ling, LIU XiangGuan. Application of SVM to prediction of silicon content in hot metal [J]. Metallurgical Industry Automation, 2005, 29(3): 33-36.
[18] 郑俊华, 吴铁军. 高炉铁水硅含量预报的ICASVM建模方法[J]. 信息与控制, 2008, 37(2): 247-252.
ZHENG Junhua, WU Tiejun. ICASVM based modeling for predicting Silicon content in blast furnace hot metal [J]. Information and Control, 2008, 37(2): 247-252.
[19] 唐贤伦, 庄陵, 胡向东. 铁水硅含量的混沌粒子群支持向量机预报方法[J]. 控制理论与应用, 2009, 26(8): 838-842.
TANG Xianlun, ZHUANG Ling, HU Xiangdong. The support vector regression based on the chaos particle swarm optimization algorithm for the prediction of silicon content in hot metal [J]. Control Theory & Applications, 2009, 26(8): 838-842.
[20] CHIANG L H, PELL R J, SEASHOLTZ M B. Exploring process data with the use of robust outlier detection algorithms [J]. Journal of Process Control, 2003, 13 (5): 437-449. |