Please wait a minute...
J4  2012, Vol. 46 Issue (4): 764-769    DOI: 10.3785/j.issn.1008-973X.2012.04.028
    
Simple nonlinear observer based dynamic LuGre friction compensation
ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Obtaining the internal bristle-deflection state of the LuGre model is difficult in the control design when using the LuGre model to achieve dynamic friction compensation in the manipulator control. The observation result differs while using different observers to get the state. A simple nonlinear observer, which is a simplification of De Wit’s nonlinear observer, was developed. The stability of the adaptive control was analyzed using the second Lyapunov theory. A low-pass filter was added to remove the influence of the high frequency noise of joint velocities measurements. The tracking accuracy using the nonlinear observer, the sliding-mode based observer and the simple nonlinear observer were 0.010, 0.009 and 0.004 rad respectively. The better position tracking performance with simple nonlinear observer was verified through a series of experimental results.



Published: 17 May 2012
CLC:  TP 241  
Cite this article:

ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui. Simple nonlinear observer based dynamic LuGre friction compensation. J4, 2012, 46(4): 764-769.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.04.028     OR     http://www.zjujournals.com/eng/Y2012/V46/I4/764


基于简化非线性观测器的LuGre动态摩擦力补偿

针对机械手臂控制中使用LuGre模型进行动态摩擦力补偿时的内部摩擦力状态识别问题,在已有的非线性观测器和基于滑模的观测器的研究基础上,缩减非线性观测器中的冗余部分,提出简化非线性观测器.采用Lyapunov方法分析基于该观测器的自适应控制算法的稳定性,说明简化观测器的使用条件为加入合适的低通滤波器,消除速度采样高频波动对观测结果的影响.实验结果对比了3种内部摩擦力状态观测器在动态LuGre摩擦力补偿中对手臂控制效果的影响,采用3种观测器进行自适应跟踪控制时的位置跟踪精度分别可以达到0.010、0.009和0.004 rad.实验表明,采用简化观测器可以取得比前2种观测器更好的自适应控制效果.

[1] KHAYATI K, BIGRAS P, DESSAINT L A. A multistage position/force control for constrained robotic systems with friction: jointspace decomposition, linearization, and multi objective observer/controller synthesis using LMI formalism [J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1698-1712.
[2] DHAOUADI R. Torque control in harmonic drives with nonlinear dynamic friction compensation [J]. Journal of Robotics and Mechatronics, 2004, 16(4): 388-396.
[3] ARMSTRONGHELOUVRY B, DUPONT P, DE WIT C C. A survey of models, analysis tools and compensation methods for the control of machines with friction [J]. Automatica, 1994, 30(7): 1083-1138.
[4] WANG Hongli, WANG Xia, TANG Yujun. Robot friction compensation based on neural network [C]∥2nd International Conference on Computer Engineering and Technology (ICCET). Chengdu: [s.n.], 2010: 304-307.
[5] TAN Yaolong, CHANG Jie, TAN Hualin. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties [J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 944-952.
[6] DE WIT C C, OLSSON H, ASTROM K J, et al. A new model for control of systems with friction [J]. IEEE Transactions on Automatic Control, 1995, 40(3): 419-425.
[7] ZHU Yongliang, PAGILLA P R. Static and dynamic friction compensation in trajectory tracking control of robots [C]∥IEEE International Conference on Robotics and Automation. Washington DC: IEEE, 2002: 2644-2649.
[8] ASTROM K J, DE WIT C C. Revisiting the LuGre friction model [J]. IEEE Control Systems Magazine, 2008, 28(6): 101114.
[9] TAN Yaolong, KANELLAKOPOULOS I. Adaptive non linear friction compensation with parametric uncertainties [C]∥ Proceedings of American Control Conference. San Diego: [s.n.], 1999: 2511-2515.
[10] XIE Wenfang. Slidingmodeobserverbased adaptive control for servo actuator with friction [J]. IEEE Transactions on Industrial Electronics, 2007, 54(3): 1517-1527.
[11] XIE Wenfang, KRZEMINSKI M, ELTAHAN H, et al. Intelligent friction compensation (IFC) in a harmonic drive [C]∥Proceedings of the IEEE 10th Annual Newfoundland Electrical and Computer Engineering Conference. St. John’s, NF, Canada: IEEE, 2002.
[12] KABGANIAN M, ERFANIAN V. Adaptive trajectory control and dynamic friction compensation for a flexiblelink robot [J]. Journal of Mechanics, 2010, 26(2): 205-217.
[13] DE WIT C C, KELLY R. Passivity analysis of a motion control for robot manipulators with dynamic friction [J]. Asian Journal of Control, 2007, 9(1): 30-36.
[14] MALAGARI S, DRIESSEN B J. Globally exponential continuous controller/observer for position tracking in robot manipulators with hysteretic joint friction [J]. Robotica, 2010, 28(5): 759-763.

[1] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. J4, 2012, 46(8): 1520-1525.
[2] JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
[J]. J4, 2012, 46(8): 1512-1519.
[3] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui, CHEN Peng. Collision detection and safe reaction of manipulator
based on disturbance observer
[J]. J4, 2012, 46(6): 1115-1121.
[4] JIANG Hong-Chao, LIU Shi-Rong, ZHANG Bei-Chao. Inverse kinematics analysis for 6 degree-of-freedom modular
manipulator
[J]. J4, 2010, 44(7): 1348-1354.
[5] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. J4, 2010, 44(2): 259-264.
[6] ZHANG Yu-Nong, XIAO Xiu-Chun, CHEN Yang-Wen, et al. Number determination of hidden-layer nodes for Hermite feed-forward neural network[J]. J4, 2010, 44(2): 271-275.