Please wait a minute...
J4  2012, Vol. 46 Issue (3): 392-401    DOI: 10.3785/j.issn.1008-973X.2012.03.003
Composition analysis-based relevance ranking for ancient mural
WANG Qi, LU Dong-ming
College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      


The present image retrieval technologies have difficulties in retrieving ancient murals, since they lack of the abilities to handle complex semantic and features of layout in painting. This work puts forward a new relevance ranking model based on composition analysis to improve ancient mural retrieval. By introducing the theory of composition on painting, the relevance ranking model measures the relevance of mural images from three aspects which are layout, topic and semantics, and reduces the semantic gap between the content of mural and the real intention of the user. The relevance ranking model was seamlessly integrated into a unified framework for semantic query expansion to improve the precision of Top N results while maintaining a high recall. Experimental results of the Dunhuang Murals show that compared with the baseline method, the R-Precision ratio of semantic mural retrieval based on this model can be increased by 36% on average.

Published: 01 March 2012
CLC:  TP 391  
Cite this article:

WANG Qi, LU Dong-ming. Composition analysis-based relevance ranking for ancient mural. J4, 2012, 46(3): 392-401.

URL:     OR


由于目前的图像检索技术没有考虑壁画的构图学特征,缺乏对复杂语义的处理能力,难以满足古代壁画研究工作对检索全面性和准确性的要求.为提高古代壁画图像语义检索的质量,提出基于构图分析的相关度模型,通过引入基于绘画构图学的理论和分析方法,从壁画内容的布局、主题和语义三方面用量化方法描述检索语义与壁画内容的相关度,较好地解决了用户的真实检索意图与壁画内容间的“语义鸿沟”问题.该相关度评价模型可嵌入基于语义查询扩展的框架中,以提高Top N结果的准确率,同时维持了较高的查全率.敦煌壁画资料检索的实际应用表明:以反映前n个结果准确率的R-Precision为评测指标,基于构图分析的相关度评价方法可比未采用相关度评价的基线方法平均高出36%.

[1] 王崇骏,杨育彬,陈世福. 基于高层语义的图像检索算法 [J]. 软件学报,2004,15(10):1461-1469.
WANG Chongjun, YANG Yubin, CHEN Shifu. Algorithms of highlevel semanticbased image retrieval [J]. Journal of Software, 2004, 15(10): 1461-1469.
[2] JIANG Shuqiang, HUANG Tiejun, GAO Wen. An ontologybased approach to retrieve digitized art images[C]∥ Proceedings of the Web Intelligence (IEEE/WIC/ACM WI 04). Washington, DC, USA: IEEE Computer Society, 2004: 131-137.
[3]  JIANG Shuqiang, DU Jun, HUANG Qingming, et al. Visual ontology construction for digitized art image retrieval [J]. Journal of Computing Science and Technology, 2005, 20(6): 855-860.
[4] DENG J, DONG W, SOCHER R, et al. ImageNet: a largescale hierarchical image database [C]∥ Proceedings of the Computer Vision and Pattern Recognition (CVPR) 2009. Washington, DC, USA: IEEE Computer Society, 2009: 248-255.
[5] LI LJ, SOCHER R AND LI FF. Towards total scene understanding: classification, annotation and segmentation in an automatic framework [C]∥ Proceedings of the Computer Vision and Pattern Recognition (CVPR) 2009. Washington, DC, USA: IEEE Computer Society, 2009: 2036-2043.
[6] SOCHER R AND LI FF. Connecting modalities: semisupervised segmentation and annotation of images using unaligned text corpora [C]∥ Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR) 2010. Washington, DC, USA: IEEE Computer Society, 2010: 966-973.
[7]  NATSEV A, HAUBOLD A, TEI J, et al. Semantic conceptbased query expansion and reranking for multimedia retrieval [C]∥ Proceedings of the 15th international conference on Multimedia. New York, NY, USA: ACM, 2007: 25-29.
[8]  张鸿,吴飞,庄越挺,等.一种基于内容相关性的跨媒体检索方法 [J].计算机学报,2008,31(5):820-826.
ZHANG Hong, WU Fei, ZHUANG Yueting, et al. Crossmedia retrieval method based on content correlations [J]. Chinese Journal of Computers, 2008, 31(5): 820-826.
[9]  王梅,周向东,张军旗,等.基于扩展生成语言模型的图像自动标注方法 [J].软件学报, 2008, 19(9) : 2449-2460.
WANG Mei, ZHOU Xiangdong, ZHANG Junqi, et al. Image autoannotation via an extended generative language method [J]. Journal of Software, 2008, 19(9): 2449-2460.
[10]  蒋跃. 绘画构图学教程[M].杭州:中国美术学院出版社,2003:1.
[11]  赵声良. 敦煌艺术十讲[M].上海:上海古籍出版社,2007:179.
[12]  BAEZAYATES R, RIBEIRONETO B. Modern information retrieval [M].NewYork:AddisonWesleyLongman,1999:73-97.
[13] CUTLER M, SHIH Y, MENG W. Using the structure of HTML documents to improve retrieval [C]∥ Proceedings of the USENIX Symposium on Internet Technologies and Systems (NISTS’97). California, USA: \
[s.n.\], 1997: 241-251.
[14]  韩玮.中国画构图艺术[M].山东:山东美术出版社,2002:87-88.
[15]  史敦宇,金洵瑨. 敦煌舞乐线描集[M]. 甘肃:甘肃人民美术出版社, 2007:117.
[16]  MATSUO Y, ISHIZUKA M. Keyword extraction from a single document using word cooccurrence statistical information[C]∥ Proceedings of the Sixteenth International Florida Artificial Intelligence Research Society Conference. California, USA: AAAI, 2003:392-396.
[17]  DOUG Beeferman, ADAM Berger, JOHN Lafferty. A model of lexical attraction and repulsion [C]∥ Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics. Madrid, Spain:\
[s.n.\], 1997:373-380.
[18] LEACOCK C, CHODOROW M. WordNet: A Lexical reference system and its application [M]. London, England: MIT Press, 1998: 265-283.
[19] HOLLINK L, SCHREIBER G, WIELEMAKER J, et al. Semantic annotation of image collections [C] ∥Proceedings of the KCAP'03 Workshop on Knowledge Capture and Semantic Annotation. Sanibel, Florida, USA: ACM, 2003: 41-48.
[20] 胡同庆.敦煌石窟艺术概述[J].敦煌研究,1993(3):16-34.
HU Tongqing. An introduction to Dunhuang Grotto art [J]. Dunhuang Research, 1993 (3): 16-34.
[21]  敦煌文物研究所.中国石窟敦煌莫高窟[M].北京:文物出版社,平凡社, 1987.
[22]  酒井敦子.南北朝时期的植物云气纹样 [J].敦煌研究, 2003 (2):20-28.
SAKAI Atsko. The motifs of scrolling flora in the Northern and the Southern Dynasties [J]. Dunhuang Research, 2003(2): 20-28.

[1] ZHAO Jian-jun, WANG Yi, YANG Li-bin. Threat assessment method based on time series forecast[J]. J4, 2014, 48(3): 398-403.
[2] CUI Guang-mang, ZHAO Ju-feng,FENG Hua-jun, XU Zhi-hai,LI Qi, CHEN Yue-ting. Construction of fast simulation model for degraded image by inhomogeneous medium[J]. J4, 2014, 48(2): 303-311.
[3] ZHANG Tian-yu, FENG Hua-jun, XU Zhi-hai, LI Qi, CHEN Yue-ting. Sharpness metric based on histogram of strong edge width[J]. J4, 2014, 48(2): 312-320.
[4] LIU Zhong, CHEN Wei-hai, WU Xing-ming, ZOU Yu-hua, WANG Jian-hua. Salient region detection based on stereo vision[J]. J4, 2014, 48(2): 354-359.
[5] WANG Xiang-bing,TONG Shui-guang,ZHONG Wei,ZHANG Jian. Study on  scheme design technique for hydraulic excavator's structure performance based on extension reuse[J]. J4, 2013, 47(11): 1992-2002.
[6] WANG Jin, LU Guo-dong, ZHANG Yun-long. Quantification-I theory based IGA and its application[J]. J4, 2013, 47(10): 1697-1704.
[7] LIU Yu, WANG Guo-jin. Designing  developable surface pencil through  given curve as its common asymptotic curve[J]. J4, 2013, 47(7): 1246-1252.
[8] HU Gen-sheng, BAO Wen-xia, LIANG Dong, ZHANG Wei. Fusion of panchromatic image and multi-spectral image based on
SVR and Bayesian method 
[J]. J4, 2013, 47(7): 1258-1266.
[9] WU Jin-liang, HUANG Hai-bin, LIU Li-gang. Texture details preserving seamless image composition[J]. J4, 2013, 47(6): 951-956.
[10] CHEN Xiao-hong,WANG Wei-dong. A HDTV video de-noising algorithm based on spatial-temporal filtering[J]. J4, 2013, 47(5): 853-859.
[11] ZHU Fan , LI Yue, JIANG Kai, YE Shu-ming, ZHENG Xiao-xiang. Decoding of rat’s primary motor cortex by partial least square[J]. J4, 2013, 47(5): 901-905.
[12] WU Ning, CHEN Qiu-xiao, ZHOU Ling, WAN Li. Multi-level method of optimizing vector graphs converted from remote sensing images[J]. J4, 2013, 47(4): 581-587.
[13] JI Yu, SHEN Ji-zhong, SHI Jin-he. Automatic ocular artifact removal based on blind source separation[J]. J4, 2013, 47(3): 415-421.
[14] WANG Xiang, DING Yong. Full reference image quality assessment based on Gabor filter[J]. J4, 2013, 47(3): 422-430.
[15] TONG Shui-guang, WANG Xiang-bing, ZHONG Wei, ZHANG Jian. Dynamic optimization design for rigid landing leg of crane
based on BP-HGA
[J]. J4, 2013, 47(1): 122-130.