[1] THOMAS C, SPRINGER P, LOEB G, et al. A miniature microelectrode array to monitor the bioelectric activity of cultured cells [J]. Experimental Cell Research, 1972, 74(1): 61-66.
[2] GROSS G, RIESKE E, KREUTZBERG G, et al. A new fixedarray multimicroelectrode systemdesigned for longterm monitoring of extracellular single unit neuronal activity in vitro [J]. Neuroscience Letters, 1977, 6(2/3): 101-105.
[3] PINE J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes [J]. Journal of Neuroscience Methods, 1980, 2(1): 19-31.
[4] EGERT U, SCHLOSSHAUER B, FENNRICH S, et al. A novel organotypic longterm culture of the rat hippocampus on substrateintegrated multielectrode arrays [J]. Brain Research Protocols, 1998, 2(4): 229-242.
[5] OKA H, SHIMONO K, OGAWA R, et al. A new planar multielectrode array for extracellular recording: application to hippocampal acute slice [J]. Journal of Neuroscience Methods, 1999, 93(1): 61-67.
[6] GROSS G, RHOADES B. The use of neuronal networks on multielectrode arrays as biosensors [J]. Biosensors & Bioelectronics, 1995, 10(6/7): 553-567.
[7] 徐莹,叶学松,许改霞,等.细胞传感器表面处理技术的研究进展 [J].传感技术学报, 2004, 17(2): 342-348.
XU Ying, YE Xuesong, XU Gaixia, et al. The research and development of the surface processing technique for cellbased biosensors [J]. Chinese Journal of Sensors and Actuators, 2004, 17(2): 342-348.
[8] 秦利锋,许改霞,李蓉,等.基于光寻址电位传感器的单细胞传感器设计 [J].浙江大学学报: 工学版,2005, 39(9): 1404-1408.
QIN Lifeng, XU Gaixia, LI Rong, et al. Design of singlecell sensor based on lightaddressable potentiometric sensor [J]. Journal of Zhejiang University: Engineering Science, 2005, 39(9): 1404-1408.
[9] WU Z, ZHAO Y, KISAALITA W. Interfacing SHSY5Y human neuroblastoma cells with SU8 microstructures [J]. Colloids and Surfaces B, Biointerfaces, 2006, 52(1): 14-21.
[10] TAKAYAMA S, MCDONALD J, OSTUNI E, et al. Patterning cells and their environments using multiple laminar fluid flows in capillary networks [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10): 5545-5548.
[11] VALERO A, BRASCHLER T, DEMIERRE N, et al. A miniaturized continuous dielectrophoretic cell sorter and its applications [J]. Biomicrofluidics, 2010, 4: 022807.
[12] FRASCA G, GAZEAU F, WILHELM C. Formation of a ThreeDimensional Multicellular Assembly Using Magnetic Patterning [J]. Langmuir, 2009, 25 (4): 2348-2354.
[13] NAM Y, CHANG J, WHEELER B, et al. Goldcoated microelectrode array with thiol linked selfassembled monolayers for engineering neuronal cultures [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(1): 158-165.
[14] KELM J, ITTNER L, BORN W, et al. Selfassembly of sensory neurons into ganglialike microtissues [J]. Journal of Biotechnology, 2006, 121(1/2): 86-101.
[15] FAUCHEUX N, SCHWEISS R, LUTZOW K, et al. Selfassembled monolayers with different terminating groups as model substrates for cell adhesion studies [J]. Biomaterials, 2004, 25(14): 2721-2730.
[16] SCHAFERLING M, WU M, ENDERLEIN J, et al. Timeresolved luminescence imaging of hydrogen peroxide using sensor membranes in a microwell format [J]. Applied Spectroscopy, 2003, 57(11): 1386-1392.
[17] PALYVODA O, CHEN C, AUNER G. Culturing neuron cells on electrode with selfassembly monolayer [J]. Biosensors & Bioelectronics, 2007, 22(9/10): 2346-2350.
[18] FRANKS W, TOSATTI S, HEER F, et al. Patterned cell adhesion by selfassembled structures for use with a CMOS cellbased biosensor [J]. Biosensors & Bioelectronics, 2007, 22(7): 1426-1433.
[19] ASPHAHANI F, THEIN M, VEISEH O, et al. Influence of cell adhesion and spreading on impedance characteristics of cellbased sensors [J]. Biosensors & Bioelectronics, 2008, 23(8): 1307-1313.
[20] ATIENZA J, ZHU J, WANG X, et al. Dynamic monitoring of cell adhesion and spreading on microelectronic sensor arrays [J]. Journal of Biomolecular Screening, 2005, 10(8): 795-805. |