Please wait a minute...
J4  2012, Vol. 46 Issue (2): 338-344    DOI: 10.3785/j.issn.1008-973X.2012.02.025
    
Feature extraction and classification of four-class
motor imagery EEG data
SHI Jin-he, SHENG Ji-zhong, WANG Pan
Institution of Electronic Circuit&Information System, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Due to the low information transfer rate and low recognition accuracy in brain computer interface (BCI), feature extraction and classification of multi-channel four-class motor imagery for electroencephalogram(EEG)-based BCI was investigated. Optimum filtering band was obtained for power spectral analysis of four-class motor imagery and resting EEG. Then, the PW-CSP, Hilbert transformation and normalization were used to extract the feature of EEG data. Classification was divided into two steps, the first step was arithmetic summation and threshold comparison, Secondly a single support vector machine (SVM) was applied if the first step failed. The algorithm was simpler than combined SVM, which provided the foundation for online application. The experimental results show that the algorithm produces high classification accuracy and less time consumption, moreover, classification result can be further improved at the expense of algorithmic complexity by adjust the threshold.



Published: 20 March 2012
CLC:  TP 391.4  
Cite this article:

SHI Jin-he, SHENG Ji-zhong, WANG Pan. Feature extraction and classification of four-class
motor imagery EEG data. J4, 2012, 46(2): 338-344.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.02.025     OR     http://www.zjujournals.com/eng/Y2012/V46/I2/338


四类运动想象脑电信号特征提取与分类算法

针对脑机接口(BCI)系统中存在的信息传输速率较慢和脑电信号识别正确率较低的问题,对多通道四类运动想象脑电信号进行研究.通过对4种运动想象及休息状态脑电信号进行功率谱分析,合理确定预处理滤波器的最佳滤波频段,然后使用PW-CSP,Hilbert变换及归一化处理的方法,对四类运动想象脑电信号进行特征提取,分类算法分为特征信号算术求和与阈值比较的预分类过程及包含单个支持向量机(SVM)的细分类过程,算法复杂度明显比采用多个SVM组合的多类分类算法要低,为实现算法的在线应用打下基础.仿真结果表明,该算法分类正确率高,时间开销小,并且可以通过调节阈值,在正确率与算法复杂度之间获得平衡.

[1] WOLPAW J R, BIRBAUMER N, HEETDERKS W J, et al. Braincomputer interface technology: a review of the first international meeting [J]. IEEE Transactions on rehabilitation Engineering, 2000, 8(2): 164-173.
[2] HU Jianfeng, XIAO Dan, MU Zhengdong. Application of entropy in motor imagery EEG classification [J]. International Journal of Digital Content Technology and its Applications, 2009, 3(2): 83-90.
[3] GHANBARI A A, KOUSARRIZI M R N, TESHNEHLAB M, et al. Wavelet and hilbert transformbased brain computer interface [C]∥ Proceedings of the International Conference on Advances in Computational Tools for Engineering Applications. Beirut: IEEE, 2009: 438-442.
[4] WAN Baikun, LIU Yangang, MING Dong, et al. Feature recognition of multiclass imaginary movements in braincomputer interface [C]∥ Proceedings of the International Conference on Virtual Environments, HumanComputer Interfaces and Measurements Systems. Hong Kong: IEEE, 2009: 250-254.
[5] PFURTSCHELLER G, DA SILVA F H L. Eventrelated EEG/EMG synchronization and desynchronization: basic principles [J]. Clinical Neurophysiology, 1999, 110(10): 1842-1857.
[6] MCFARLAND D J, ANDERSON C W, MLLER K R, et al. BCI meeting 2005workshop on BCI signal processing: feature extraction and translation [J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2): 135-138.
[7] BASHASHATI A, FATOURECHI M, WARD R K, et al. A survey of signal processing algorithms in braincomputer interfaces based on electrical brain signals [J]. Journal of Neural Engineering, 2007, 4: 32-57.
[8] DORNHEGE G, BLANKERTZ B, CURIO G, et al. Increase information transfer rates in BCI by CSP extension to multiclass [C]∥ Advances in Neural Information Processing Systems. Canada: MIT Press, 2004: 733-740.
[9] DORNHEGE G, BLANKERTZ B, CURIO G, et al. Boosting bit rates in noninvasive EEG singletrial classifications by feature combination and multiclass paradigms [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(6): 993-1002.
[10] WILSON J A, MELLINGER J, SCHALK G, et al. A procedure for measuring latencies in braincomputer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2010, 57(7): 1785-1797.
[11] BCI competition III [DB/OL]. [2010628]. http:∥www.bbci.de/competition/iii/.
[12] ANG K K, CHIN Z Y, ZHANG H H, et al. Filter bank common spatial pattern (FBCSP) in braincomputer interface [C]∥ Proceedings of the International Joint Conference on Neural Network. Hong Kong: IEEE, 2008: 2390-2397.
[13] TANG Yan, TANG Jingtian, GONG Andong. Multiclass EEG classification for brain computer interface based on CSP [C]∥ Proceedings of the Inernational Conference on Biomedical Engineering and Informatics. Sanya: IEEE, 2008: 469-472.
[14] THOMAS K P, GUAN C, LAU C T, et al. A new discriminative common spatial pattern method for motor imagery braincomputer interfaces [J]. IEEE Transactions on Biomedical Engineering, 2009, 56(11): 2730-2733.
[15] WU Wei, GAO Xiaorong, GAO Shangkai. Oneversustherest (OVR) algorithm: an extension of common spatial patterns (CSP) algorithm to multiclass case [C]∥ Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai: IEEE 2005: 2387-2390.
[16] CHIN Z Y, ANG K K, WANG C, et al. Multiclass filter bank common spatial pattern for fourclass motor imagery BCI [C]∥ Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Minnesota: IEEE 2009: 571-574.
[17] 王璐,吴小培,高湘萍.四类运动想象任务的脑电特征分析及分类[J].计算机技术与发展,2008,18(10): 23-26.
WANG Lu, WU Xiaopei, GAO Xiangping. Analysis and classification of fourclass motor imagery EEG data [J]. Computer Technology and Development, 2008, 18(10): 23-26.
[18] VAPNIK V N, Statistical learning theory [M]. New York: John Wiley&Sons Press, 1998.
[19] SCHLOGL A, LEE F, BISCHOF H, et al. Characterization of fourclass motor imagery EEG data for the BCIcompetition 2005 [J]. Journal of Neural Engineering, 2005, 2(4): L14-22.
[20] WANG Yijun, GAO Shangkai, GAO Xiaorong. Common spatial pattern method for channel selection in motor imagery based braincomputer interface [C]∥ Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Shanghai: IEEE 2005: 5392-5395.
[21] 李明爱,刘净瑜,郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报,2009,28(2): 161-165.
LI Mingai, LIU Jingyu, HAO Dongmei. EEG recognition of motor imagery based on improved CSP algorithm[J]. Chinese Journal of Biomedical Engineering, 2009, 28(2): 161-165.
[22] RAMOSER H, MULLERGERKING J, PFURTSCHELLER G. Optimal spatial filtering of single trial EEG during imagined hand movement [J]. IEEE Transactions on Rehabilitation Engineering, 2000, 8(4): 441-446.
[23] WANG Lei, XU Guizhi, WANG Jiang, et al. Application of hilberthuang transform for the study of motor imagery tasks [C]∥ IEEE Engineering in Medicine and Biology Society Conference Proceedings. Canada: IEEE, 2008: 3848-385.

[1] XU Song,SUN Xiu-xia,HE Yan. Iterative method of camera distortion calibration utilizing lines-imaging characteristics[J]. J4, 2014, 48(3): 404-413.
[2] . Augmented reality registration from nature features ased on planar color distribution[J]. J4, 2013, 47(12): 2243-2252.
[3] YANG Bing, XU Duan-qing, YANG Xin, ZHAO Lei, TANG Da-wei. Painting image classification based on aesthetic style similarity rule[J]. J4, 2013, 47(8): 1486-1492.
[4] YANG Bang-hua, HE Mei-yan, LIU Li, LU Wen-yu. EEG classification based on batch incremental SVM in
brain computer interfaces
[J]. J4, 2013, 47(8): 1431-1436.
[5] LOU Xiao-jun, SUN Yu-xuan, LIU Hai-tao. Clustering boundary over-sampling classification method for imbalanced data sets[J]. J4, 2013, 47(6): 944-950.
[6] MENG Zi-bo, JIANG Hong, CHEN Jing, YUAN Bo, WANG Li-qiang. Feature pruning based AdaBoost and its application in face detection[J]. J4, 2013, 47(5): 906-911.
[7] HE Zhi-xiang, DING Xiao-qing, FANG Chi, WEN Di. Multiview face detection based on LBP and CCS-AdaBoost[J]. J4, 2013, 47(4): 622-629.
[8] LIU Xiao-fang,YE Xiu-zi ,ZHANG San-yuan ,ZHANG Yin. Non-quadratic regularized edge-preserving reconstruction for
parallel magnetic resonance image
[J]. J4, 2012, 46(11): 2035-2043.
[9] ZHANG Yuan-hui,WEI Wei. Online angular velocity estimated visual measurement for ping pong robot[J]. J4, 2012, 46(7): 1320-1326.
[10] ZHANG Da-wei, ZHU Shan-an. Face recognition based kernel neighborhood preserving
discriminant embedding
[J]. J4, 2011, 45(10): 1842-1847.
[11] SHU Zhen-yu, WANG Guo-zhao. Fast mesh segmentation algorithm based on tensor voting[J]. J4, 2011, 45(6): 999-1005.
[12] Xu Shu-chang, ZHANG San-yuan, ZHANG Yin. Robust algorithm for extracting skin pigment concentration
from color image
[J]. J4, 2011, 45(2): 253-258.
[13] SHE Jing-Shan, MENG Meng, LUO Zhi-Ceng, MA Yu-Liang. Electromyography movement recognition of lower limb based on multiple kernel learning[J]. J4, 2010, 44(7): 1292-1297.
[14] XUE Ling-Yun, DUAN Hui-Long, XIANG Hua-Qi, FAN Ying-Le. Image restoration based on stochastic resonance mechanism of FitzHugh-Nagumo neuron[J]. J4, 2010, 44(6): 1103-1107.
[15] ZHANG Yuan-Hui, HUI Wei, YU Dan. Kalman tracking algorithm based on realtime vision of pingpong robot[J]. J4, 2009, 43(09): 1580-1584.