Please wait a minute...
J4  2012, Vol. 46 Issue (1): 112-117    DOI: 10.3785/j.issn.1008-973X.2012.01.18
    
3D-DCT based volumetric three-dimensional video data compression method
ZHANG Shen,WANG Wei-dong,ZHAO Ya-fei,WU Zu-cheng, 
WANG Yue-hai,ZHANG Ming
Department of Information Science and Electronic Engineering, Zhejiang Provincial Key Laboratory of Information
Network Technology, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A three-dimensional discrete cosine transform (3D-DCT) based volumetric three-dimensional video data compression method was proposed in order to solve the problem of huge volumetric three-dimensional video data. The method combines 3D-DCT and three-dimensional motion estimation. The 3D-DCT was adopted to exploit spacial redundancies in a volumetric frame. A fast three-dimensional cube matching algorithm was proposed in motion estimation in order to reduce temporal redundancies between adjacent volumetric frames. A half voxel search algorithm was employed in order to improve the precision of cube matching. A quantitative method for intra-frame and inter-frame cube was proposed, and the quantified DCT coefficients were organized by a threedimensional zigzag scan. The 3D-DCT coefficients were coded by a run-length/adaptive arithmetic encoding system. Experimental results showed that the method outperformed JPEG2000 for sequences with slow motion, while the performance of the method was worse than JPEG2000 at high bitrates for sequences with drastic motion. The method gained 2 dB in average peak signal-to-noise ratio compared with the 3D-DCT based static volumetric image compression method.



Published: 22 February 2012
CLC:  TN 919.8  
Cite this article:

ZHANG Shen,WANG Wei-dong,ZHAO Ya-fei,WU Zu-cheng, WANG Yue-hai,ZHANG Ming. 3D-DCT based volumetric three-dimensional video data compression method. J4, 2012, 46(1): 112-117.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2012.01.18     OR     http://www.zjujournals.com/eng/Y2012/V46/I1/112


基于三维离散余弦变换的体三维视频数据压缩

针对体三维视频数据量巨大的问题,提出基于三维离散余弦变换(3D-DCT)的体三维视频数据压缩方法.该方法结合3D-DCT和三维运动估计,利用3D-DCT消除体帧内部的空间冗余.提出快速三维块匹配算法实现运动估计消除相邻体帧之间的时间冗余,利用半体素搜索算法提高块匹配精度.提出帧内体块和帧间体块的量化方法,对量化后的DCT系数采用三维之字形扫描方式组织,应用游程/自适应算术编码系统实现对DCT系数的编码.实验结果表明,对于运动较平缓的序列,该方法的性能优于JPEG2000方法;对于运动剧烈的序列,在高比特率情况下性能不如JPEG2000.该方法的平均峰值信噪比相对于3D-DCT静态体图像压缩方法提高2 dB左右.

[1] BENZIE P, WATSON J, SURMAN P, et al. A survey of 3DTV displays: techniques and technologies [J]. IEEE Transactions on Circuits System Video Technology, 2007, 11(17): 1647-1658.
[2] 姜太平, 沈春林, 谭皓. 真三维立体显示技术[J]. 中国图象图形学报, 2003, 8(4): 361-366.
JIANG Taiping, SHEN Chunlin, TAN Hao. Overview of the true threedimension volumetric display technologies [J]. Journal of Image and Graphics, 2003, 8(4): 361-366.
[3] ISO/IEC 154441, Information technologyJPEG2000 image coding system:Part 1: core coding system [S].Geneva:ISO/IEC, 2000.
[4] GUTHE S, STRABER W. Realtime decompression and visualization of animated volume data [C]∥ Proceedings of the Conference on Visualization. San Diego: IEEE, 2001: 349-356.
[5] KASSIM A A, YAN P K, LEE W S, et al. Motion compensated lossytolossless compression of 4D medical images using integer wavelet transforms [J]. IEEE Transactions on Information Technology in Biomedicine, 2005, 9(1): 132-138.
[6] ZENG L, JANSEN C P, MARSCH S, et al. Fourdimensional wavelet compression of arbitrarily sized echocardiographic data [J]. IEEE Transactions on Medical Imaging, 2002, 21(9): 1179-1187.
[7] LALGUDI H G, BILGIN A, MARCELLIN M W, et al. Compression of fMRI and Ultrasound images using 4D SPIHT [C]∥ Proceedings of 2005 International Conference on Image Processing. Genoa: IEEE, 2005: 746-749.
[8] SANCHEZ V, NASIOPOULOS P, ABUGHARBIEH R. Novel lossless fMRI image compression based on motion compensation and customized entropy coding [J]. IEEE Transactions on Information Technology in Biomedicine, 2009, 13(4): 645-655.
[9] MARTIN U E, KAUP A. Analysis of compression of 4D volumetric medical image datasets using multiview (MVC) video coding methods [C]∥ IEEE International Conference on Multimedia and Expo. Hannover: IEEE, 2008: 525-528.
[10] LI R, ZENG B, LIOU M L. A new threestep search algorithm for block motion estimation [J]. IEEE Transactions on Circuits System Video Technology, 1994, 4(4): 438-442.
[11] SIKORA T. MPEG4 video standard verification model [J]. IEEE Transactions on Circuits System Video Technology, 1997, 7(l): 19-31.
[12] SCHELKENS P, MUNTEANU A, BARBARIEN J, et al. Wavelet coding of volumetric medical datasets [J]. IEEE Transactions on Circuits System Video Technology, 2003, 22(3): 441-458.
[13] VANDEMEULEBROUCKE J, SARRUT D, CLARYSSE P. The POPImodel, a pointvalidated pixelbased breathing thorax model [C] ∥ XVth International Conference on the Use of Computers in Radiation Therapy. Toronto: [s. n.], 2007.
[14] Osirix development group, DICOM sample image sets [EB/OL]. [2011-05-23]. http:∥pubimage.hcuge.ch:8080.

[1] LIU Yun-peng, ZHANG San-yuan, WANG Ren-fang, ZHANG Yin. Inter-frame fast coding algorithm in temporal scalability
for traffic video
[J]. J4, 2013, 47(3): 400-408.
[2] LI Chun-shu, HUANG Kai, XIU Si-wen, MA De, GE Hai-tong, YAN Xiao-lang. High efficient pipeline design and implementation for sub-pixel
interpolation process in H.264/AVC
[J]. J4, 2011, 45(7): 1187-1193.
[3] MA De, HUANG Kai, CHEN Hua-feng, YU Min, YAN Xiao-lang. Mixed increasing filter pipeline design for H.264/AVC deblocking filter[J]. J4, 2011, 45(7): 1206-1214.
[4] DU Juan, DING Dan-dan, YU Lu. Design methodology of FPGA based reconfigurable video encoder[J]. J4, 2012, 46(5): 905-911.