Please wait a minute...
J4  2011, Vol. 45 Issue (8): 1441-1445    DOI: 10.3785/j.issn.1008-973X.2011.08.019
    
Rail pressure control strategy based on auto-code
generation technology
GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to shorten rail pressure control strategy development cycle and reduce development costs,modeling and automatic code generation of feed forward control plus proportional-integral-differential(PID) feedback control strategy were completed through the Matlab / Simulink and RTW Embedded Coder kits. For improving the control stability, rail pressure control system was scheduled to sample rail pressure sensor on fixed phase according to the rail pressure fluctuation rules in an engine working cycle. The test results show that rail pressure steady state error is less than 1.5 MPa, maximum overshoot is about 2 MPa or less during pressure step response and settling time is less than 0.5 s, pressure fluctuation is less than ±1.5 MPa under different fuel injection quantities. The control strategy is easy to implement, control accuracy and response performance has met the requirements of common rail pressure control system.



Published: 08 September 2011
CLC:  TK 421.23  
Cite this article:

GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu. Rail pressure control strategy based on auto-code
generation technology. J4, 2011, 45(8): 1441-1445.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.08.019     OR     https://www.zjujournals.com/eng/Y2011/V45/I8/1441


基于自动代码生成的共轨压力控制策略

为了缩短共轨压力控制算法的开发周期及降低开发成本,通过Matlab/Simulink及RTW Embedded Coder工具箱完成前馈控制加比例积分微分(PID)反馈控制的高压共轨压力控制策略的建模及自动代码生成.针对共轨压力在发动机一个工作循环内的波动规律,共轨压力控制系统定相位采样共轨压力传感器,提高共轨压力控制的稳定性.试验结果表明,稳态时共轨压力波动幅度小于1.5 MPa,阶跃响应时共轨压力超调量在2 MPa以内,稳定时间小于0.5 s,在不同燃油喷射量下,轨压波动总能稳定在±1.5 MPa以内.该控制策略易于实现,并兼顾控制精度及响应速度,完全满足高压共轨压力控制要求.

[1] 赵彦斌,钟再敏.基于代码自动生成技术的汽车电子实时控制软件开发[J].计算机辅助工程,2008,17(3): 37-38.
ZHAO Yanbin, ZHONG Zaimin. Development on automotive electronic real time control software based on autocode generation technology [J]. Computer Aided Engineering, 2008, 17(3): 37-38.
[2] 倪计民,杨挺然,杨健,等.基于模型的高压共轨柴油机电控参数优化[J].内燃机工程,2008,29(1): 6-7.
NI Jimin, YANG Tingran, YANG Jian, et al. Optimizing electrical control parameters of common rail diesel engine by modelbased method[J]. Chinese Internal Combustion Engine Engineering, 2008, 29(1): 6-7.
[3] 张玉良,高峰,杜发荣,等.基于dSPACE的车辆起步控制策略硬件在回路仿真[J].系统仿真学报,2008,20(10): 2722-2723.
ZHANG Yuliang, Gao Feng, DU Farong, et al. Hardwareintheloop simulation of vehicle starting control method based on dSPACE [J]. Journal of System Simulation, 2008, 20(10): 2722-2723.
[4] 周文华.高压共轨电控喷油系统控制算法研究[J].内燃机工程,2002,23(4): 31-32.
ZHOU Wenhua. The algorithm research on an electronic controlled high pressure common rail fuel injection system[J]. Chinese Internal Combustion Engine Engineering, 2002, 23(4): 31-32.
[5] Mathworks Inc. Simulink fixedpoint toolbox user’s guide, release v3.1 [EB/OL]. [2010-01-20]. http:∥www.mathworks.com/access/helpdesk/help/toolbox/fixedpoint/rn/bqmzoua.html.
[6] 肖文雍,杨林,梁锋. GD1高压共轨式电控柴油机燃油喷射压力控制策略的研究[J]. 内燃机学报,2004, 22(3): 239-240.
XIAO Wenyong, YANG Lin, LIANG Feng. Injection pressure control of GD1 electronically controlled highpressure common rail fuel injection system [J]. Transactions of CSICE, 2004, 22(3): 239-240.

[1] MI Gang-gang, ZHOU Wen-hua, SHEN Cheng-yu, GUO Xiu-qi. Design of driving module and fault diagnosis for
high-speed solenoid valve of diesel
[J]. J4, 2012, 46(9): 1654-1659.
[2] GUO Xiu-qi, ZHOU Wen-hua, ZHENG Chao-wu. Design of solenoid valve driving circuit module for high pressure
common rail system based on circuit simulation
[J]. J4, 2011, 45(5): 901-906.
[3] ZHOU Wen-hua, ZHU Chun-di, SU Yu. Key technology of electronic controlled system of common-rail diesel engine[J]. J4, 2011, 45(1): 118-121.