Please wait a minute...
J4  2011, Vol. 45 Issue (5): 846-850    DOI: 10.3785/j.issn.1008-973X.2011.05.012
    
Semi-blind sources separation of mechanical vibrations base on
maximization of negentropy
ZHOU Xiao-feng, YANG Shi-xi
Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to separate mechanical vibration sources form sensor signals rapidly and effectively, a novel method was proposed, which was based on maximization of negentropy for semi-blind sources separation of mechanical vibrations. The reference signals that carry some information of sources were constructed. The mean square error between reference signals and separated sources was incorporated into contrast function as the constraints. The interested mechanical vibration source was obtained by solving the constrained optimization problem. The proposed method was compared with the conventional BSS method, and the experiment results showed that the proposed method is very effective. It is possible to apply the new method to vibration signals analysis and mechanical fault diagnosis.



Published: 24 November 2011
CLC:  TN 911.7  
  TH 165.3  
Cite this article:

ZHOU Xiao-feng, YANG Shi-xi. Semi-blind sources separation of mechanical vibrations base on
maximization of negentropy. J4, 2011, 45(5): 846-850.

URL:

https://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2011.05.012     OR     https://www.zjujournals.com/eng/Y2011/V45/I5/846


基于负熵最大化的机械振源半盲分离方法

为了快速、有效地分离传感器观测信号中的机械振源信号,提出一种负熵最大化的机械振源半盲分离方法.该方法根据目标振源的振动特性构造相应的参考源信号,将参考源信号和分离的目标振源信号的均方误差作为约束条件引入到盲源分离的对照函数中,通过求解约束最优问题,实现目标机械振源信号的分离.试验结果表明,基于负熵最大化的半盲分离方法能快速、有效地分离出目标振源信号,为机械振动信号的监测与故障诊断提供一种新的方法和思路.

[1] 李舜酩. 机械振动信号盲源分离的时域方法 [J]. 应用力学学报, 2005, 22(04):579-585.
LI Shunming. Blind source separation of mechanical vibration signal in time domain [J].Chinese Journal of Applied Mechanics, 2005,22(04):579-585.
[2] 叶红仙, 杨世锡, 杨将新. 多振源卷积混合的时域盲源分离算法 [J]. 机械工程学报, 2009, 45(1):189-194.
YE Hongxian, YANG Shixi, YANG Jiangxin. Temporal blind source separation algorithm for convolution mixtures with multi sources [J]. Journal of Mechanical Engineering, 2009, 45(1): 189-194.
[3] 孙晖, 朱善安. 调制故障源信号盲分离的经验模态分解法 [J]. 浙江大学学报:工学版, 2006, 40(2) :258-261.
SUN Hui, ZHUN Shanan. Empirical mode decomposition for blind separation of modulation fault source signals [J]. Journal of Zhejiang University:Engineering Science, 2006, 40(2): 258-261.
[4] YPMA A. Learning methods for machine vibration analysis and health monitoring [D]. Delft: Delft University of Technology, 2001.
[5] LIU X, RANDALL R B, ANTONI J. Blind separation of internal combustion engine vibration signals by a deflation method [J]. Mechanical Systems and Signal Processing, 2008, 22(5): 1082-1091.
[6] GELLE G, COLAS M, SERVIERE C. Blind source separation: a tool for rotating machine monitoring by vibrations analysis [J]. Journal of Sound and Vibration, 2001, 248(5): 865-885.
[7] 胥永刚, 张发启, 何正嘉. 独立分量分析及其在故障诊断中的应用[J]. 振动与冲击, 2004, 23(2):104-108.
XU Yonggang, ZHANG Faqi, HE Zhengjia. Independent component analysis and its applications to fault diagnosis [J]. Journal of Vibration and Shock,2004, 23(2):104-108.
[8] ANTONI J. Blind separation of vibration components: principles and demonstrations [J]. Mechanical Systems and Signal Processing, 2005, 19(6): 1166-1180.
[9] WEI L, RAJAPAKSE J C. Approach and applications of constrained ICA [J]. IEEE Transactions on Neural Networks, 2005, 16(1): 203-212.
[10] LU W, RAJAPAKSE J C. Ica with reference [J]. Neurocomputing, 2006, 69(16/18): 2244-2257.
[11] HYVARINEN A, KARHUNEN J, OJA E. Independent component analysis [M]. New York: Wiley, 2001.
[12] HYVARINEN A. Fast and robust fixedpoint algorithms for independent component analysis [J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626-634.

[1] LIU Feng-xia, PAN Xiang,GONG Xian-yi. Matched-field three-dimensional source localization
using spiral line array
[J]. J4, 2013, 47(1): 62-69.
[2] LIU Zhi-kun, LIU Zhong, FU Xue-zhi, NING Xiao-ling. Modified variable step-size adaptive filtering and
Eckart weighted denoising algorithm
[J]. J4, 2012, 46(6): 1014-1020.
[3] XIONG Xin, YANG Shi-xi, ZHOU Xiao-feng. IMF-based denoising method for vibration signal in
rotating machinery
[J]. J4, 2011, 45(8): 1376-1381.
[4] WU Yi-quan, ZHANG Xiao-jie, WU Shi-hua, ZHANG Sheng-wei. Two-dimensional minimum error thresholding based on chaotic
particle swarm optimization or decomposition
[J]. J4, 2011, 45(7): 1198-1205.
[5] JIN Wen-guang, ZHANG Zheng-yu, TANG Shao-hua. New method for synchronization in DSTFT demodulation
algorithm of 2FSK signal
[J]. J4, 2011, 45(6): 1027-1031.
[6] GE Peng, LI Qi, FENG Hua-jun, XU Zhi-hai, CHEN Yue-ting. Sub-pixel motion detection by joint transform correlator
based on bicubic spline interpolation
[J]. J4, 2010, 44(11): 2198-2202.
[7] XIE Jiang-Jun, HOU Di-Bei, HUANG Beng-Cha, ZHANG Guang-Xin, ZHOU Ze-Kuai. Fast single parameter level set segmentation based on
semi-implicit schemes
[J]. J4, 2010, 44(8): 1496-1501.
[8] ZHANG Shao-Wei, XU Dong, YUAN Bo, LAI Xiao-Beng. Least square design of complex finite impulse response filter
with elliptic error constraint
[J]. J4, 2010, 44(7): 1338-1342.
[9] LING Bei, GU Wei-Kang, DU Xin. Error concealment for whole frame losses in H264[J]. J4, 2009, 43(09): 1732-1738.