Please wait a minute...
J4  2010, Vol. 44 Issue (9): 1637-1642    DOI: 10.3785/j.issn.1008-973X.2010.09.002
    
Edge adaptive four-point piecewise parabolic scaler implementation
DING Yong, WANG Xiang, YAN Xiao-lang
Institute of VLSI Design, Zhejiang University, Hangzhou 310027, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

The common difficulty with conventional interpolation techniques is to preserve the details in image, i.e. edges, so how to interpolate the pixels along or nearby edges becomes a core problem of scaling algorithms.  To deal with this problem, an edge adaptive fourpoint piecewise parabolic scaling algorithm was presented in this paper, in which the pixels along or nearby edges were interpolated by edge direction oriented method. In hardware implementation, an efficient VLSI architecture based on Farrow structure was developed. Experimental results show that the proposed algorithm can achieve arbitrary expansion as well as preserving edges in image, and its hardware cost is lower than that of the  cubic interpolation algorithm.



Published: 01 September 2010
CLC:  TP 752  
  TP 302.2  
Cite this article:

DING Yong, WANG Xiang, YAN Xiao-Lang. Edge adaptive four-point piecewise parabolic scaler implementation. J4, 2010, 44(9): 1637-1642.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.09.002     OR     http://www.zjujournals.com/eng/Y2010/V44/I9/1637


边缘自适应的四点分段抛物线图像缩放

为了解决数字视频图像缩放技术中的边缘模糊或细节退化等问题,实现图像的无级非线性缩放,提升插值算法的性能,提出一种边缘自适应的四点分段抛物线插值的图像缩放方法,通过对图像的边缘像素以及靠近边缘的邻近像素的自适应插值,避免或抑制边缘模糊、锯齿状边缘、对比度和亮度下降等现象.在硬件实现中,采用基于Farrow结构的VLSI电路结构,硬件复杂度大大降低.实验结果表明:此算法的性能接近于3次插值,而硬件复杂度明显低于后者.

[1] GONZALEZ R C, WOODS R E. Digital image processing [M]. Englewood Cliffs, NJ: PrenticeHall, 2002.
[2] KEYS R G. Cubic convolution interpolation for digital image processing[J]. IEEE Transactions on Acoustics, Speech, Signal Processing, 1981, ASSP29(6): 11531160.
[3] MEIJERING E, UNSER M. A note on cubic convolution interpolation [J]. IEEE Transactions on Image Processing, 2003, 12(4): 477479.
[4] MAELAND E. On the comparison of interpolation methods [J]. IEEE Transactions on Medical Imaging, 1988, 7(3): 213217.
[5] ERUP L, GARDNER F M, HARRIS R A. Interpolation in digital modems—part II: implementation and performance [J]. IEEE Transactions on Communications, 1993, 41(6): 9981008.
[6] MARSI S, CARRATO S, RAMPONI G. VLSI implementation of a nonlinear image interpolation filter [J]. IEEE Transactions on Consumer Electronics, 1996, 42(3): 721728.
[7] 王效灵, 陈涛, 汪颖, 等. 边沿自适应图像缩放算法 [J]. 浙江大学学报:工学版, 2006, 40(9): 15071510.
WANG Xiaoling, CHEN Tao, WANG Ying, et al. Edge adaptive image scaling algorithm [J]. Journal of Zhejiang University : Engineering Science, 2006, 40(9): 15071510.
[8] CHA Y J, KIM S. The erroramended sharp edge (EASE) scheme for image zooming [J]. IEEE Transactions on Image Processing, 2007, 16(6): 14961505.
[9] LEE J H, JEONG T. Edgeadaptive demosaicking for artifact suppression along line edges [J]. IEEE Transactions on Consumer Electronics, 2007, 53(3): 10761083.
[10] GARDNER F M. Interpolation in digital modems-part I: fundamentals [J]. IEEE Transactions on Communications, 1993, 41(3): 502508.
[11] FARROW C W. A continuously variable digital delay element [C]∥ Proceedings of IEEE International Symposium on Circuits and Systems. Espoo, Finland:IEEE, 1988, 3: 26412645.
[12] CARSON K S, WU Y C. On the design and efficient implementation of the farrow structure [J]. IEEE Signal Processing Letters, 2003, 10(7): 189192.
[13] VESMA J. A frequencydomain approach to polynomialbased interpolation and the farrow structure [J]. IEEE Transactions on Circuits and SystemsII: Analog and Digital Signal Processing, 2000, 47(3): 206209.

[1] DING Yong, SUN Gang-de, Yan Xiao-lang. A hybrid motion-compensated de-interlace with
adaptive interpolation
[J]. J4, 2011, 45(2): 323-329.