Please wait a minute...
J4  2010, Vol. 44 Issue (7): 1348-1354    DOI: 10.3785/j.issn.1008-973X.2010.07.021
    
Inverse kinematics analysis for 6 degree-of-freedom modular
manipulator
JIANG Hong-chao1,2, LIU Shi-rong2, ZHANG Bo-tao1,2
1. Institute of Automation,East China University of Science and Technology, Shanghai 200237, China;
2. Institute of Automation,Hangzhou Dianzi University, Hangzhou 310018, China
Download:   PDF(0KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An inverse kinematics procedure was proposed aimed at the developed 6 degreeoffreedom (DOF) modular manipulator. The kinematics of the manipulator was analyzed according to the structural characteristic and the kinematic constraint. A forward kinematics model of the maniputor was conducted, and the complete analytical solution of the inverse kinematics was obtained. The DenavitHartenberg (DH) method was used to describe the workspace of the manipulator, resulting in the forward kinematics model with angle variables under the kinematic constraint of the manipulator. The solvability of the forward kinematics model was analyzed. Then the complete analytical solution of the inverse kinematics can be acquired by solving the forward kinematics model with the inverse matrix analysis. Simulation results verified the correctness of the forward kinematics model and the inverse kinematics solution. The inverse kinematics results can be further used for the precise location of endeffector and the motion planning.



Published: 01 July 2010
CLC:  TP 241  
Cite this article:

JIANG Hong-Chao, LIU Shi-Rong, ZHANG Bei-Chao. Inverse kinematics analysis for 6 degree-of-freedom modular
manipulator. J4, 2010, 44(7): 1348-1354.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2010.07.021     OR     http://www.zjujournals.com/eng/Y2010/V44/I7/1348


六自由度模块化机械臂的逆运动学分析

针对自主研发的六自由度(DOF)模块化机械臂,提出一种逆运动学求解方法.根据机械臂的结构特点和运动学约束,对机械臂的运动学进行分析.建立该类型机械臂的正运动学模型,得到了机械臂逆运动学的完整解析解.采用Denavit-Hartenberg(D-H)法对机械臂操作空间进行描述,在考虑机械臂运动学约束的基础上,得到以关节角度为变量的正运动学模型.通过分析正运动学模型的可解性, 采用矩阵逆乘的解析法求解机械臂的正运动学模型,得到了该类机械臂逆运动学的完整解析解.通过仿真验证了正运动学模型及运动学逆解的正确性,运动学逆解可以用于机械臂末端执行器的精确定位和运动规划.

[1] PAUL R P, SHIMANO B E, MAYER G. Kinematics control equations for simpl manipulators [J]. IEEE Transactions on Systems, Man and Cybernetics, 1981, 11(6): 449445.
[2] FU K S, GONZALEZ R C, LEE C G S. Robotics: control, sensing, vision and intelligence [M]. NewYork: McGrawHill, 1987: 111.
[3] REGNIER S, OUEZDOU F B, BIDAUD P. Distributed method for inveres kinematies of all serial manipulators [J]. Mechanism and Machine Theory, 1997, 32(7): 855867.
[4] JUN B H, SHIM H W, LEE P M, et al. Workspace control system of underwater teleoperated manipulators on ROVs [C]∥ Proceedings of OCEANS 2009 EUROPE. Piscataway, NJ : IEEE, 2009: 16.
[5] SAAB L, SOUERES P. FOURQUET J Y. Coupling manipulation and locomotion tasks for a humanoid robot [C]∥ Proceedings of International Conference on Advances in Computational Tools for Engineering Applications. Piscataway, NJ : IEEE, 2009: 8489.
[6] ROLLAND L, CHANDRA R. Forward kinematics of the 66 general parallel manipulator using real coded genetic algorithms [C]∥ Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ: IEEE, 2009: 16371642.
[7] XU D, CALDERON C A A, GAN J Q, et al. An analysis of the inverse kinematics for a 5DOF manipulator [J]. International Journal of Automation and Computing, 2005,2(2):114124.
[8] 郑慧峰,周晓军,张杨.基于最优时间的超声检测轨迹规划[J].浙江大学学报:工学版,2010,44(1): 2933, 183.
ZHENG Huifeng, ZHOU Xiaojun, ZHANG Yang. Time optimization based trajectory planning of ultrasonic inspection [J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (1) : 2933, 183.
[9] 张智,朱齐丹,吴自新.基于免疫遗传算法的机械手避碰逆解[J].系统仿真学报,2007,19(3): 514518.
ZHANG Zhi, ZHU Qidan, WU Zixin. Collision free inverse kinematic solution of maniputor based on immune genetic algorithm [J]. Journal of System Simulation, 2007, 19(3): 514518.
[10] 周友行,何清华,邓伯禄.一种改进的爬山法优化求解冗余机械手运动学逆解[J].机器人,2003,25(1): 3538.
ZHOU Youhang, HE Qinghua, DENG Bolu. An ameliorative “mountain climbing” arithmetic to solve inverse kinematics of redundant manipulator [J]. Robot, 2003, 25(1): 3538.
[11] 徐文福,刘宇,强文义,等.自由漂浮空间机器人的笛卡尔连续路径规划[J].控制与决策,2008,23(3): 278282, 287.
XU Wenfu, LIU Yu, QIANG Wenyi, et al. Cartesian continuouspath planning for freefloating space robot [J]. Control and Decision, 2008, 23(3): 278282, 287.
[12] DENAVIT J, HARTENBERG R S. A kinematic notation for lower pair mechanisms based on matrices [J]. ASME Journal of Applied Mechanics, 1955, 77(6): 215221.
[13] PIEPER D L. The kinematics of manipulators under computer control [D]. California: Stanford University, 1968.
[14] DUFFY J. Analysis of mechanisms and robot manipulators [M]. London: Edward Arnold, 1980: 369409.

[1] NI Chu-feng, LIU Shan. Adaptive preshaping vibration control for load-varying
flexible manipulator
[J]. J4, 2012, 46(8): 1520-1525.
[2] JIN Bo, LIU Shan. Iterative learning control based on terminal endpoint tracking error of
flexible manipulator
[J]. J4, 2012, 46(8): 1512-1519.
[3] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui, CHEN Peng. Collision detection and safe reaction of manipulator
based on disturbance observer
[J]. J4, 2012, 46(6): 1115-1121.
[4] ZHONG Cong-wei, XIANG Ji, WEI Wei, ZHANG Yuan-hui. Simple nonlinear observer based dynamic LuGre friction compensation[J]. J4, 2012, 46(4): 764-769.
[5] SHUAI Xin, LI Yan-Jun, TUN Tie-Jun. Real time predictive control algorithm for endpoint trajectory tracking of flexible manipulator[J]. J4, 2010, 44(2): 259-264.
[6] ZHANG Yu-Nong, XIAO Xiu-Chun, CHEN Yang-Wen, et al. Number determination of hidden-layer nodes for Hermite feed-forward neural network[J]. J4, 2010, 44(2): 271-275.