1] 刘祥官,刘芳.高炉炼铁过程优化与智能控制系统[M].北京:冶金工业出版社,2003: 4360.
[2] 王玉涛,严其艳,杨钢,等.高炉铁水含硅量的动态神经网络多步预测[J].仪器仪表学报,2006,27(11): 14481451.
WANG Yutao, YAN Qiyan, YANG Gang, et al. Multistep prediction of molten iron silicon content in blast furnace using dynamic neural network [J]. Chinese Journal of Scientific Instrument, 2006, 27(11): 14481451.
[3] ZHAO Min, LIU Xiangguan, LUO Shihua. An evolutionary artificial neural networks approach for BF hot metal silicon content prediction [C]∥ Proceedings of International Conference on Natural Computation. Berlin: SpringerVerlag, 2005: 433436.
[4] ZAKOIAN J M. Threshold heteroskedastic models [J]. Journal of Economic Dynamics and Control, 1994, 18(5): 931944.
[5] TSAY R S. 金融时间序列分析[M].潘家柱,译.北京:机械工业出版社,2007: 6197.
[6] ENGLE R F. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation [J]. Econometrica, 1982, 50(4): 9871007.
[7] BOLLERSLEY T. Generalized autoregressive conditional heteroskedasticity [J]. Journal of Econometrics, 1986, 31(2): 307327.
[8] NELSON D B. Conditional heteroskedasticity in asset returns: a new approach [J]. Econometrica, 1991, 59(2): 347370.
[9] 谢赤,禹湘,储慧斌.基于TGARCH模型的证券投资惯性反向交易策略实证研究[J].管理科学,2007,20(3): 6875.
XIE Chi, YU Xiang, CHU Huibin. An empirical study on momentum and contrarian investment strategy of mutual fund based on TGARCH model [J]. Journal of Management Sciences, 2007, 20(3): 6875.
[10] 余帆,沈炯,刘西陲.基于自回归条件异方差反向传播网络模型的日前边际电价预测[J].电网技术,2008,32(8): 6366.
YU Fan, SHEN Jiong, LIU Xichui. Dayahead marginal price forecasting based on autoregressive conditional heteroskedasticityback propagation network model [J]. Power System Technology, 2008, 32(8): 6366.
[11] 王燕.应用时间序列[M].北京:中国人民大学出版社,2005: 139207.
[12] 高铁梅.计量经济分析方法与建模:EViews应用及实例[M].北京:清华大学出版社,2006: 171199.
[13] ZENG Jiusun, GAO Chuanhou, LIU Xiangguan, et al. Model to predict silicon content in blast furnace hot metal [J]. Asian Journal of Control, 2008, 10(6): 16. |