Please wait a minute...
J4  2009, Vol. 43 Issue (11): 2079-2084    DOI: 10.3785/j.issn.1008-973X.2009.11.025
    
Evaluation and incentive mechanism of peaking capability of ydroelectric/thermoelectric generators
XIE Jun1, BAI Xing-zhong2, GAN De-qiang1
(1. College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China;
2. Northwest China Dispatch and Communication Centre, Xian 710048, China)
Download:   PDF(771KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Six essential factors affecting the peaking capability of hydroelectric/thermoelectric generators were analyzed, including maximum output, minimum output, minimum up/down time, ramp up/down limits, ramp domain, and water discharge of hydro units for peaking. Incorporating the six essential factors, a fuzzy synthetic evaluation method for the peaking capability of generators was presented. The incentive mechanism for improving the peaking capability of generators considers the peaking task of the system, the peaking capability of each generator, and the purchased electricity quantity of each generator. The simulation with the original data of Northwest China Power Grid (NCPG) showed that the evaluation method can accurately reflect the six factors which affecting the peaking capability of generators, and the proposed incentive mechanism can incent the generators to provide the peaking service and improve the peaking capabilities effectively.



Published: 01 November 2009
CLC:  TM 73  
  F 123.9  
Cite this article:

XIE Dun, BAI Xin-Zhong, GAN De-Jiang. Evaluation and incentive mechanism of peaking capability of ydroelectric/thermoelectric generators. J4, 2009, 43(11): 2079-2084.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.11.025     OR     http://www.zjujournals.com/eng/Y2009/V43/I11/2079


水电/火电机组调峰能力的评估与激励

分析影响水电/火电机组调峰能力的6项重要因素:最大技术出力、最小技术出力、启停时间、出力调整速率、出力变化幅值、水电弃水调峰,提出机组调峰能力的模糊综合评估方法.建立综合考虑电网调峰任务、各机组调峰能力、各机组上网电量的机组调峰能力经济激励机制数学模型.对西北电网的仿真计算结果表明,提出的评估方法能够正确反映上述6项因素对机组调峰能力的影响,建立的激励机制能够有效激励机组提供调峰服务并提高其调峰能力.

[1] 萧国泉,徐绳均. 电力规划[M]. 北京:水利电力出版社, 1993: 7-16.
[2] 刘长义,韩放,于继来,等. 互联电网的调峰调频和联络线调整[J]. 电网技术, 2003, 27(4): 36-38.
LIU Chang-yi, HAN Fang, YU Ji-lai, et al. Study on peak load, frequency and tie-line power flow regulation on interconnected power system [J]. Power System Technology, 2003, 27(4): 36-38.
[3] 高志华,任震. 基于市场集中度的调峰力分析[J]. 电力系统及其自动化学报, 2006, 18(5): 74-78.
GAO Zhi-hua, REN Zhen. Analysis of peak regulation power based on centralization degree [J]. Proceedings of CSU-EPSA, 2006, 18(5): 74-78.
[4] 廖胜利,程春田,蔡华详,等. 改进的火电调峰方式[J]. 电力系统自动化, 2006, 30(1): 8994.
LIAO Sheng-li, CHENG Chun-tian, CAI Hua-xiang, et al. Improved algorithm of adjusting discharge peak by thermal power plants [J]. Automation of Electrical Power Systems, 2006, 30(1): 89-94.
[5] 高志华,任震,黄雯莹. 电力市场中调峰权及其交易机制[J]. 中国电机工程学报, 2005, 25(5): 88-92.
GAO Zhi-hua, REN Zhen, HUANG Wen-ying. Peak regulation right and the corresponding transaction mechanism in electricity market [J]. Proceedings of the CSEE, 2005, 25(5): 88-92.
[6] DOORMAN G L. Capacity subscription: solving the peak demand challenge in electricity markets [J]. IEEE Transactions on Power Systems, 2005, 20(1): 239-245.
[7] 万永华,张详. 水火电联合调峰方法的探讨[J]. 水力发电学报, 2001, 73(2): 1-9.
WAN Yong-hua, ZHANG Xiang. A research on method for unified peak modulation of hydroelectric and thermal power plants [J]. Journal of Hydroelectric Engineering, 2001, 73(2): 1-9.
[8] 郭亚军. 综合评价理论与方法[M]. 北京:科学出版社, 2002: 75-93.
[9] 李波,刘念,王秀婕. 高压电网绝缘子在线绝缘性能的多级模糊综合评判[J]. 电网技术, 2007, 31(18): 19-22.
LI Bo, LIU Nian, WANG Xiu-jie. Multilevel fuzzy comprehensive evaluation of on-line insulation performance of high voltage insulators [J]. Power System Technology, 2007, 31(18): 19-22.
[10] 马一太,王志国,杨昭,等. 燃气轮机性能评价的模糊综合评判方法[J]. 中国电机工程学报, 2007, 31(15): 218-220.
MA Yi-tai, WANG Zhi-guo, YANG Zhao, et al. Fuzzy comprehensive method for gas turbine evaluation [J]. Proceedings of CSEE, 2007, 31(15): 218-220.
[11] 赵霞,赵成勇,贾秀芳,等. 基于可变权重的电能质量模糊综合评价[J]. 电网技术, 2005, 29(6): 11-16.
ZHAO Xia, ZHAO Cheng-yong, JIA Xiu-fang, et al. Fuzzy synthetic evaluation of power quality based on changeable weight [J]. Power System Technology, 2005, 29(6): 11-16.

[1] CHEN Li-li, HUANG Min-xiang, GAN De-qiang. Optimal allocation of short circuit current limiting strategies base on
modified discrete particle swarm optimization algorithm
[J]. J4, 2011, 45(3): 510-514.
[2] WANG Guang-Ceng, CAO Yi-Jia, CU Jun, et al. Design and implementation of general report integrated  management system for power company[J]. J4, 2009, 43(11): 2062-2066.