Please wait a minute...
J4  2009, Vol. 43 Issue (10): 1878-1882    DOI: 10.3785/j.issn.1008-973X.2009.10.023
    
Experimental and numerical investigation of innovative movable connection
CHEN Ju1, JIN Wei-liang1, SHEN Xiao-hong2, TONG Jian-guo2, QIU Wen-qian2
(1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Zhejiang Electric Power Design Institute, Hangzhou 310012, China)
Download:   PDF(970KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

An innovative movable connection for large scale sub-station frames was proposed for solving the deformation caused by temperature expansion. The movable connection was designed to release the temperature deformation in the longitudinal direction under the sustained loading from other two directions. The local and overall behaviour of the rolling bearing were investigated by loading tests. Results showed that the movable connection could move in the longitudinal direction under the load of other two directions. The lateral resistance was approximately 2.5% of the vertical load. Then the numerical model of Zhebei 1 MV large scale sub-station structures for thermal-load analysis was developed. Results show that thermal expansion deformation can be released with the application of the movable connection at the middle column-beam joint. The movable connection can be also applied in other steel structures.



Published: 29 November 2009
CLC:  TU 375  
Cite this article:

CHEN Ju, JIN Wei-Liang, CHENG Xiao-Gong, et al. Experimental and numerical investigation of innovative movable connection. J4, 2009, 43(10): 1878-1882.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008-973X.2009.10.023     OR     http://www.zjujournals.com/eng/Y2009/V43/I10/1878


新型可动结点试验研究和数值分析

为解决特高等级大跨变电钢结构的温度变形问题,提出了一种新型的可动结点,该结点可以在长度方向自由滑动一定距离,以释放温度变形,同时又可以在另两个方向上承受荷载.通过平板和结点试验研究了该可动结点的局部性能和整体性能,结果表明,该结点在承受另两个方向的荷载下进行长度方向的移动,移动方向的侧向阻力仅为承受竖直荷载的2.5%左右.根据浙北1 MV特高压变电钢构架建立了温度-荷载耦合数值分析模型,分析了可动结点对于构架变形和承载力的影响.分析表明,对于大跨度连续构架,在中间柱的梁端设可动结点可以有效的解决温度应力问题,该结点也可以用于其他钢结构的温度应力问题.

[1] ASCE 10—1997. Design of latticed steel transmission structures [S]. USA: American Society of Civil Engineers, 2000.
[2] BLEDSOE J K. 765 Tower design for 6-conductor bundle [J]. Electrical Transmission Line, 2006,12(1):125136.
[3] LEMASTER R, NOPRATVARAKORN V, THEISS T. Elastic-plastic analysis of tubular transmission structures [J]. Computers and Structures, 1988, 28(5):603620.
[4] ZHU A, ZHU H, GUO Y. Study on the bolting top-joint of substation truss–column [J]. Journal of Constructional Steel Research, 2008. (in press).
[5] 中华人民共和国交通部.JT/T4-2004.公路桥梁板式橡胶支座[S]. 北京: 交通出版社, 2004.
[6] 中华人民共和国交通部.TB/T1983-2006.铁路桥梁板式橡胶支座[S].北京: 交通出版社,2006.
[7] 中华人民共和国建设部.JG/T-1999.建筑隔振橡胶支座[S] .北京: 中国标准出版社, 1999.
[8] Q/SODC05-2001.桥梁球冠圆板式橡胶支座[S].上海: 上海标准出版社, 2001.
[9] AL-JABRI K S, BURGESS I W, LENNON T, et al. Moment–rotation–temperature curves for semi-rigid joints [J]. Journal of Constructional Steel Research, 2005, 61(3): 281303.
[10] AL-JABRI K S, DAVISON J B, BURGESS I W. Performance of beam-to-column joints in fire—A review [J]. Fire Safety Journal, 2008, 43(1):5062.
[11] SANTIAGO A, SILVA LS, REAL P, et al. Numerical study of a steel sub-frame in fire [J]. Computers and Structures, 2008, 86(15-16): 16191632.
[12] LANDESMANN A, BATISTA E M, ALVES J L D. Implementation of advanced analysis method for steel-framed structures under fire conditions [J]. Fire Safety Journal, 2005, 40(4):339366.
[13] ABAQUS. Analysis users manual. Version 6.5 [M]. Pawtucket, USA: H, K&S, Inc, 2004.
[14] 何勇,金伟良,张爱晖, 等.船桥碰撞动力学过程的非线性数值模拟[J]. 浙江大学学报:工学版, 2008, 42(6):10651071.
HE Yong, JIN Wei-liang, ZHANG Ai-hui, et al. Nonlinear collision simulation on dynamic interaction between ship-bridge [J]. Journal of Zhejiang University: Engineering Science, 2008, 42(6): 10651071.

[1] JIN Wei-liang, WANG Yi. Experimental study on mechanics behaviors of reinforced concrete beams under simultaneous chloride attacks and sustained load[J]. J4, 2014, 48(2): 221-227.
[2] ZHANG Si-ying, JIN Wei-liang, XU Chen. Effectiveness of an amine-based inhibitor—guanidine for
steel in chloride-contaminated concrete
[J]. J4, 2013, 47(3): 449-455.
[3] JIN Wei-liang, LI Zhi-yuan, XU Chen. Life prediction method of concrete structures based on
relativistic information entropy
[J]. J4, 2012, 46(11): 1991-1997.
[4] XIANG Yi-qiang, CHENG Kun, GUO Dong-mei, LI Wei, LIN Shi-xu. Analysis of RC bulge cracking by coupled
thermal-mechanical method
[J]. J4, 2012, 46(8): 1444-1449.
[5] JI Yong-sheng, WANG Zhi-long, XU Cong-yu, ZHOU Min, ZHAO Wen. Study on polarization curve diagrams of steel corrosion in concrete[J]. J4, 2012, 46(8): 1457-1464.
[6] WANG Xiao-Zhou, JIN Wei-Liang, YAN Yong-Dong. Path probability model of corrosion-crack assessment for existing reinforced concrete structures[J]. J4, 2010, 44(6): 1191-1196.