Please wait a minute...
JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE)
    
Trajectory planning algorithm for hydraulic servo manipulator of three freedom
LIU Xiang qi1,2, MENG Zhen1, NI Jing2, ZHU Ze fei2
1. School of Mechanical Engineering and Automation,Zhejiang Sci Tech University, Hangzhou 310018, China;
2. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
Download:   PDF(1270KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

A hydraulic manipulator  trajectory planning algorithm based on non axis driving space was proposed by introducing the closed chain vector kinematics model and the 5 order B spline curve interpolation approximation theory.  For the optimization problem of the total running time of the manipulator when met  the kinematic constraints, the improved particle swarm optimization was introduced to optimize the solving step, so as to realize the time optimal continuous trajectory curve. The experimental results of practical application showed that the absolute error was less than 25 mm between the  actual tool center point (TCP) trajectory and the desired trajectory. The research can solve the motion planning of the non joint driving hydraulic manipulator and improve the efficiency of complex path planning algorithm.



Published: 15 October 2015
CLC:  TP 241.2  
Cite this article:

LIU Xiang qi, MENG Zhen, NI Jing, ZHU Ze fei. Trajectory planning algorithm for hydraulic servo manipulator of three freedom. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2015, 49(9): 1776-1782.

URL:

http://www.zjujournals.com/eng/10.3785/j.issn.1008 973X.2015.09.022     OR     http://www.zjujournals.com/eng/Y2015/V49/I9/1776


三自由度液压伺服机械手轨迹优化

采用闭链矢量运动学模型,引入5阶B样条曲线插值逼近理论,提出一种基于非轴系驱动空间的液压机械手运行轨迹规划算法.针对当满足运动学约束时机机械手的总运行时间优化问题,引入改进型粒子群优化算法,优化求解时间步长,从而实现时间最优连续运动轨迹曲线.实际应用的实验结果显示:可以将实际工具中心点(TCP)轨迹和期望轨迹的绝对误差控制在25 mm以内,为液压机械手运动控制提供较理想的轨迹曲线.该研究较好地解决了非关节驱动液压机械手系统运动规划问题,提高了针对复杂路径规划算法的效率.

[1] 潘楚滨.液压与气压传动[M].北京:机械工业出版社,2010:108-110.
[2] GASPARETTO A,LANZUTTI A,VIDONI R,et al.Experimental validation and comparative analysis of optimal time jerk algorithms for trajectory planning [J]. Robotics and Computer Integrated Manufacturing,2012,28(2):164-181.
[3] GASPARETTO A,ZANOTTO V. Optimal trajectory planning for industrial robots [J]. Advances in Engineering Software,2010,41(4):548-556.
[4] ABE A.Trajectory planning for residual vibration suppression of a two link rigid flexible manipulator considering large deformation [J].Mechanism and Machine Theory,2009,44(9):1627-1639.
[5] 朱世强,刘松国,王宣银,等. 机械手时间最优脉动连续轨迹规划算法[J].机械工程学报,2010,46(3):47-52.
ZHU Shi qiang,LIU Song guo,WANG Xuan yin,et al. Time optimal and jerk continuous trajectory planning algorithm for manipulators [J]. Journal of Mechanical Engineering,2010,46(3):47-52.
[6] 周芳,朱齐丹,赵国良. 基于改进快速搜索随机树法的机械手路径优化[J].机械工程学报,2011,47(11):30-35.
ZHOU Fang,ZHU Qi dan,ZHAO Guo liang. Path optimization of manipulator based on the improved rapidly exploring random tree algorithm [J]. Journal of Mechanical Engineering,2011,47(11):30-35.
[7] GASPARETTO A, ZANOTTO V. A new method for smooth trajectory planning of robot manipulators [J]. Mechanism and Machine Theory,2007,42(4):455-471.
[8] TIAN L F, COLLINS C. An effective robot trajectory planning method using a genetic algorithm [J]. Mechatronics,2004,14(5):455-470.
[9] BAUML B,WIMBOCK T,HIRZINGER G.Kinematically optimal catching a flying ball with a hand arm system[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS).Taipei:IEEE/RSJ,2010:2592-2599.
[10] SARAVANAN R,RAMABALAB S,BALAMURUGAN C.Multi objective trajectory planner for industrial robots with payload constraints [J].Robotica,2008,26(6):753-765.
[11] 徐海黎,解祥荣,庄健,等. 工业机器人的最优时间与最优能量轨迹规划[J].机械工程学报,2010,46(9):19-25.
XU Hai li,XIE Xiang rong,ZHUANG Jian,et al. Global time energy optimal planning of industrial robot trajectories [J]. Journal of Mechanical Engineering,2010,46(9):19-25.
[12] 杨玉维,赵新华,孙启湲,等. 基于多体动力学特性的机械手时间最优轨迹规划[J].机械工程学报,2014,50(7):8-14.
YANG Yu wei, ZHAO Xin hua, SUN Qi yuan,et al. Trajectory optimization of manipulator for minimum working time based on multi body dynamic characters [J]. Journal of Mechanical Engineering,2014,50(7):8-14.
[13] 史也,梁斌,王学谦,等. 基于量子粒子群优化算法的空间机器人非完整笛卡尔路径规划[J].机械工程学报,2011,47(23):65-73.
SHI Ye, LIANG Bin, WANG Xue qian, et al.Cartesian non holonomic path planning of space robot based on quantum behaved particle swarm optimization algorithm [J]. Journal of Mechanical Engineering,2011,47(23):65-73.
[14] GUO J C,WANG X J.Trajectory planning of redundant robot manipulators using QPSO algorithm [C]∥Proceedings of the 8th World Congress on Intelligent Control and Automation.Jinan:[s.n.],2010:403-408.
[15] 张书涛, 张震, 钱晋武. 基于 Tau 理论的机器人抓取运动仿生轨迹规划[J]. 机械工程学报, 2014, 50(13): 42-51.
ZHANG Shu tao, ZHANG Zhen, QIAN Jin wu. Bio inspired trajectory planning for robot catching movements based on the Tau theory [J]. Journal of Mechanical Engineering,2014, 50(13): 42-51.
[16] 戈新生,孙鹏伟. 自由漂浮空间机械臂非完整运动规划的粒子群优化算法[J].机械工程学报,2007,43(4):34-38.
GE Xin sheng,SUN Peng wei. Particle swarm optimization algorithm of the non holonomic motion planning for mechanical arm in free floating space [J]. Journal of Mechanical Engineering,2007,43(4):34-38.
[17] 倪敬,邵斌,蒙臻,等. 液压拉床双缸IPSO PID伺服同步驱动控制研究[J]. 中国机械工程,2013,24(11):1494-1500.
NI Jing,SHAO Bin,MENG Zhen,et al. IPSO PID servo synchro control on hydraulic broaching machine with dual cylinder [J].China Mechmical Engineering,2013,24(11):14941500.
[18] 黄进,胡英,马孜,等. 基于量子粒子群优化算法的工业机器人与外部轴标定[J].机械工程学报,2009,45(7):63-67.
HUANG Jin,HU Ying,MA Zi,et al.Industrial robot and external axle calibration based on particle swarm optimization [J]. Journal of Mechanical Engineering,2009,45(7):63-67.

No related articles found!