针对跨域推荐任务中源域用户交互数据不丰富所导致的兴趣偏好建模困难问题,以及多个兴趣之间的关联被忽略问题,提出源域数据增强与多兴趣细化迁移的跨域推荐模型. 该模型引入源域数据增强策略,为每个用户在源域中生成经过去噪处理的辅助序列,缓解用户在源域中的交互数据稀疏问题,获得更丰富的用户兴趣偏好. 使用双序列多兴趣提取模块和多兴趣细化迁移模块,完成兴趣提取与多个兴趣的细化迁移. 在基于3个公开跨域推荐评测任务的对比实验中,与最优的基线相比,提出方法的平均MAE降低了22.86%,平均RMSE降低了19.65%,取得了最优的性能表现,证明了提出方法的有效性.