Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (3): 614-622    DOI: 10.3785/j.issn.1008-973X.2020.03.023
水利工程     
基于孔隙率和局部时间步长的城市洪水模拟
李薇(),邹吉玉,胡鹏*()
浙江大学 海洋学院,浙江 杭州 310058
Urban flood simulation based on porosity and local time step
Wei LI(),Ji-yu ZOU,Peng HU*()
Ocean College, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2626 KB)   HTML
摘要:

为提高城市洪水模拟的计算效率,在有限体积法框架下,基于能自动捕捉激波、间断的高精度Harten-Latex-van Leer-Contact (HLLC)近似黎曼算子,并结合局部时间步长技术,建立满足静水平衡特性的各向异性孔隙率浅水模型. 经典城市洪水模拟结果表明,所建立的模型能够精确模拟洪水传播过程的复杂流动现象,并能显著提升计算效率:孔隙率方法降低了建筑物周围网格加密的要求,能使计算效率提升一个数量级;局部时间步长技术让每个网格采用尽可能大的时间步长,减少了循环次数,可进一步提升计算效率约2.0~3.0倍.

关键词: 各向异性孔隙率浅水方程城市洪水模拟局部时间步长有限体积法    
Abstract:

A well-balanced shallow water model of anisotropic porosity was developed under the framework of finite volume method, in order to increase the computational efficiency of urban flood simulation. The high-resolution Harten-Latex-van Leer-Contact (HLLC) approximate Riemann solver which could automatically capture shockwaves and discontinuities was used for flux computation, together with the local time step technique for time updating. The application to classic idealized urban floods shows that the represent model can accurately reproduce the complex hydrodynamics of urban floods and increase the computational efficiency markedly: the anisotropic porosity method reduces the requirement of local grid refining around obstructions and increases the computational efficiency by an order of magnitude; the local time step technique allows each grid to use a relatively large time step and reduces the temporal iteration, and further saves the computation cost by about two to three times.

Key words: anisotropic porosity    shallow-water equation    urban flood simulation    local time step    finite volume method
收稿日期: 2019-04-11 出版日期: 2020-03-05
CLC:  TV 131.2  
基金资助: 国家重点研发计划资助项目(2016YFC0402305-02);国家自然科学基金资助项目(11872332,11772300);浙江省自然科学基金资助项目(LR19E090002);浙江大学-舟山市市校联合资助项目(K18-529112-004)
通讯作者: 胡鹏     E-mail: lw05@zju.edu.cn;pengphu@zju.edu.cn
作者简介: 李薇(1984—),女,副教授,从事河流海岸动力学、水沙模拟研究. orcid.org/0000-0002-6016-052X. E-mail: lw05@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李薇
邹吉玉
胡鹏

引用本文:

李薇,邹吉玉,胡鹏. 基于孔隙率和局部时间步长的城市洪水模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 614-622.

Wei LI,Ji-yu ZOU,Peng HU. Urban flood simulation based on porosity and local time step. Journal of ZheJiang University (Engineering Science), 2020, 54(3): 614-622.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.03.023        http://www.zjujournals.com/eng/CN/Y2020/V54/I3/614

图 1  三角网格下孔隙率的概念模型图
图 2  理想城市洪水实验布置图
图 3  各计算方案在建筑物区域的网格划分图
图 4  测点水深随时间的变化(平衡算例1)
图 5  不同时刻的水位和地形三维视图(平衡算例2)
图 6  方案C_C和P_RN在10 s时的水深等值线对比图
图 7  理想化城市洪水实验不同测点处水深随时间的变化
图 8  理想化城市洪水实验不同时刻沿街道y=2 m的水深
图 9  理想化城市洪水实验在不同时刻沿街道y=2 m的流速
图 10  各方案在不同局部时间步长(LTS)最大更新层级情况下的计算时间加速倍数
方案 ${ { {\delta} }_{ {\rm{h} }g} }$/m ${ { {\delta} }_{ {\rm{hs} } } }$/m ${ { {\delta} }_{\rm{V} } }$/(m·s–1
测点1 测点18 测点44 测点55 t=4 s t=5 s t=6 s t=10 s t=4 s t=5 s t=6 s t=10 s
C_C 0.042 0.015 0.022 0.032 0.030 0.023 0.022 0.013 0.466 0.253 0.196 0.135
P_CG 0.032 0.019 0.037 0.027 0.034 0.036 0.038 0.024 0.325 0.292 0.317 0.194
P_CN 0.030 0.017 0.028 0.026 0.033 0.041 0.040 0.023 0.297 0.384 0.288 0.263
P_MN 0.038 0.013 0.028 0.023 0.023 0.017 0.021 0.014 0.309 0.212 0.144 0.121
P_RN 0.034 0.013 0.031 0.024 0.023 0.017 0.020 0.014 0.330 0.205 0.174 0.159
表 1  不同方案的计算值与实测值的误差比较
1 DE ALMEIDA G A M, BATES P D Applicability of the local inertial approximation of the shallow water equations to flood modeling[J]. Water Resources Research, 2013, 49 (8): 4833- 4844
doi: 10.1002/wrcr.20366
2 COSTABILE P, COSTANZO C, MACCHIONE F Performances and limitations of the diffusive approximation of the 2-D shallow water equations for flood simulation in urban and rural areas[J]. Applied Numerical Mathematics, 2017, 116: 141- 156
doi: 10.1016/j.apnum.2016.07.003
3 CHEN A S, EVANS B, DJORDJEVIC S, et al A coarse-grid approach to representing building blockage effects in 2D urban flood modelling[J]. Journal of Hydrology, 2012, 426 (Suppl. C): 1- 16
4 GUINOT V Multiple porosity shallow water models for macroscopic modelling of urban floods[J]. Advances in Water Resources, 2012, 37 (1): 40- 72
5 GUINOT V, DELENNE C Macroscopic modelling of urban floods[J]. La Houille Blanche, 2015, (6): 19- 25
6 VELICKOVIC M, ZECH Y, SOARES-FRAZAO S Steady-flow experiments in urban areas and anisotropic porosity model[J]. Journal of Hydraulic Research, 2017, 55 (1): 85- 100
doi: 10.1080/00221686.2016.1238013
7 贺治国, 翁浩轩, 高冠, 等 植被群影响下动床洪水数值模拟研究[J]. 应用基础与工程科学学报, 2017, 25 (1): 17- 27
HE Zhi-guo, WENG Hao-xuan, GAO Guan, et al Numerical simulation of dam-break flood over mobile and vegetated beds[J]. Journal of Basic Science and Engineering, 2017, 25 (1): 17- 27
8 周浩澜, 陈洋波 城市化地面二维浅水模拟[J]. 水科学进展, 2011, 22: 407- 412
ZHOU Hao-lan, CHEN Yang-bo 2D shallow water simulation for urbanized areas[J]. Advances in Water Science, 2011, 22: 407- 412
9 COZZOLINO L, PEPE V, CIMORELLI L, et al The solution of the dam-break problem in the Porous Shallow water Equations[J]. Advances in Water Resources, 2018, 114: 83- 101
doi: 10.1016/j.advwatres.2018.01.026
10 FERRARI A, VACONDIO R, DAZZI S, et al A 1D - 2D shallow water equations solver for discontinuous porosity field based on a generalized riemann problem[J]. Advances in Water Resources, 2017, 107
11 HE Z, WU T, WENG H, et al Numerical simulation of dam-break flow and bed change considering the vegetation effects[J]. International Journal of Sediment Research, 2017, 32 (1): 105- 120
doi: 10.1016/j.ijsrc.2015.04.004
12 SOARES-FRAZAO S, LHOMME J, GUINOT V, et al Two-dimensional shallow-water model with porosity for urban flood modelling[J]. Journal of Hydraulic Research, 2008, 46 (1): 45- 64
doi: 10.1080/00221686.2008.9521842
13 FINAUD-GUYOT P, DELENNE C, LHOMME J, et al An approximate-state Riemann solver for the two-dimensional shallow water equations with porosity[J]. International Journal for Numerical Methods in Fluids, 2010, 62 (12): 1299- 1331
14 SANDERS B F, SCHUBERT J E, GALLEGOS H A Integral formulation of shallow-water equations with anisotropic porosity for urban flood modeling[J]. Journal of Hydrology, 2008, 362 (1-2): 19- 38
doi: 10.1016/j.jhydrol.2008.08.009
15 OZGEN I, ZHAO J H, LIANG D F, et al Urban flood modeling using shallow water equations with depth-dependent anisotropic porosity[J]. Journal of Hydrology, 2016, 541: 1165- 1184
doi: 10.1016/j.jhydrol.2016.08.025
16 KIM B, SANDERS B F, FAMIGLIETTI J S, et al Urban flood modeling with porous shallow-water equations: a case study of model errors in the presence of anisotropic porosity[J]. Journal of Hydrology, 2015, 523: 680- 692
doi: 10.1016/j.jhydrol.2015.01.059
17 GUINOT V, SANDERS B F, SCHUBERT J E Dual integral porosity shallow water model for urban flood modelling[J]. Advances in Water Resources, 2017, 103: 16- 31
doi: 10.1016/j.advwatres.2017.02.009
18 ZHOU J G, CAUSON D M, MINGHAM C G, et al The surface gradient method for the treatment of source terms in the shallow-water equations[J]. Journal of Computational Physics, 2001, 168 (1): 1- 25
doi: 10.1006/jcph.2000.6670
19 SANDERS B F Integration of a shallow water model with a local time step[J]. Journal of Hydraulic Research, 2008, 46 (4): 466- 475
doi: 10.3826/jhr.2008.3243
20 HU P, LEI Y, HAN J, et al Computationally efficient modeling of hydro-sediment-morphodynamic processes using a hybrid local time step/global maximum time step[J]. Advances in Water Resources, 2019, 127: 26- 38
doi: 10.1016/j.advwatres.2019.03.006
21 胡鹏, 韩健健, 雷云龙 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报: 工学版, 2019, 53 (4): 743- 752
HU Peng, HAN Jian-jian, LEI Yun-long Coupled modeling of sediment-laden flows based on local-time-step approach[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 743- 752
22 HU P, HAN J, LI W, et al Numerical investigation of a sandbar formation and evolution in a tide-dominated estuary using a hydro-morphodynamic model[J]. Coastal Engineering Journal, 2018, 60 (4): 466- 483
doi: 10.1080/21664250.2018.1529263
23 NEPF H M Drag, turbulence, and diffusion in flow through emergent vegetation[J]. Water Resources Research, 1999, 35 (2): 479- 489
doi: 10.1029/1998WR900069
24 YUE Z, LIU H, LI Y, et al A well-balanced and fully coupled noncapacity model for dam-break flooding[J]. Mathematical Problems in Engineering, 2015, 1- 13
25 AUDUSSE E, BOUCHUT F, BRISTEAU M, et al A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows[J]. Journal on Scientific Computing, 2004, 25 (6): 2050- 2065
doi: 10.1137/S1064827503431090
26 HOU J M, SIMONS F, MAHGOUB M, et al A robust well-balanced model on unstructured grids for shallow water flows with wetting and drying over complex topography[J]. Computer Methods in Applied Mechanics and Engineering, 2013, 257: 126- 149
doi: 10.1016/j.cma.2013.01.015
27 SOARES-FRAZAO S, ZECH Y Dam-break flow through an idealised city[J]. Journal of Hydraulic Research, 2008, 46 (5): 648- 658
doi: 10.3826/jhr.2008.3164
28 OZGEN I, LIANG D F, HINKELMANN R Shallow water equations with depth-dependent anisotropic porosity for subgrid-scale topography[J]. Applied Mathematical Modelling, 2016, 40 (17/18): 7447- 7473
[1] 胡鹏,韩健健,雷云龙. 基于局部分级时间步长方法的水沙耦合数学模拟[J]. 浙江大学学报(工学版), 2019, 53(4): 743-752.
[2] 吴钢锋,贺治国,刘国华. 基于守恒稳定格式的二维坡面降雨动力波洪水模型[J]. J4, 2014, 48(3): 514-520.
[3] 陈一帆,程伟平,蒋建群,钱镜林. 含水工构筑物的山区河流二维流场数值模拟[J]. J4, 2013, 47(11): 1945-1950.
[4] 李志峰 吴大转 王乐勤. 基于动网格方法的圆柱启动瞬态流动数值模拟[J]. J4, 2008, 42(2): 264-268.