Please wait a minute...
浙江大学学报(工学版)  2019, Vol. 53 Issue (1): 107-114    DOI: 10.3785/j.issn.1008-973X.2019.01.012
计算机技术     
双场景类型遥感图像的配准拼接优化
许越1, 徐之海1, 冯华君1, 李奇1, 陈跃庭1, 徐毅2, 赵洪波2
1. 浙江大学 现代光学仪器国家重点实验室, 浙江 杭州 310027;
2. 上海卫星工程研究所, 上海 200240
Registration and stitching optimization for two-scene-type remote sensing image
XU Yue1, XU Zhi-hai1, FENG Hua-jun1, LI Qi1, CHEN Yue-ting1, XU Yi2, ZHAO Hong-bo2
1. State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310027, China;
2. Shanghai Institute of Satellite Engineering, Shanghai 200240, China
 全文: PDF(1196 KB)   HTML
摘要:

为了提升包含2种场景类型的遥感图像的配准拼接质量,提出基于误差权重再分配的遥感图像配准拼接优化方法. 使用尺度不变特征变换(SIFT)特征检测算子,提取2幅具有重叠区域的遥感图像的特征点,计算得到初始的单应性矩阵. 针对遥感图像细节丰富,但在某些特定区域分布不均匀的特点,将图像按照网格分割成若干小子块,进行信息熵聚类. 图像熵反映的是灰度分布的分散程度,较大的熵意味着更大的信息量和纹理细节. 按照信息量分布,将图像分隔为2个大的图像区域,每一区域近似代表一种场景类型. 以特征点匹配的残余误差为目标函数,对不同场景区域的特征点分配不同的优化权重,权重来源于各图像子块的信息熵,反映了图像各场景信息量的多少,从而改善拼接效果,使之符合人眼视觉要求. 实验表明,采用该方法可以再分配特征点匹配残余误差,细节丰富区域的匹配残差降低14%,提升细节丰富区域的配准拼接质量,降低随机性,提高了配准过程的稳定度.

Abstract:

An optimization approach based on weighted value reassignment in RMSE was presented for remote sensing image registration and stitching in order to improve the registration and stitching quality of remote sensing image which consists of two scene types. Scale-invariant feature transform (SIFT) detector was used to extract feature points and obtain the homogeneous matrix between two images which have overlapped region. Remote sensing image has lots of details that may not evenly distribute. A method based on sub-block image entropy clustering to segment the image into large blocks was proposed. The image entropy reflected the dispersion degree of gray level distribution, and larger entropy value meant larger amount of information and more texture detail. Each segment represented a unique scene type and a weighted value would be assigned to feature points. In objective function of RMSE, the weighted value reflected the amount of texture information and contributed to the improvement of optimization result, which friendly matched the human vision. The experimental results showed that the registration residual error of feature points could be reassigned and was reduced by 14% in the region which had rich details. Then the registration and stitching quality and the stability of the registration process were improved, and the randomness was reduced.

收稿日期: 2018-01-03 出版日期: 2019-01-07
CLC:  TP751  
基金资助:

国家重点研发计划资助项目(2016YFB0500803)

通讯作者: 冯华君,男,教授,博导.orcid.org/0000-0002-5606-6637.     E-mail: fenghj@zju.edu.cn
作者简介: 许越(1989-),男,博士生,从事遥感图像处理研究.orcid.org/0000-0003-4480-0790.E-mail:xydbhzl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

许越, 徐之海, 冯华君, 李奇, 陈跃庭, 徐毅, 赵洪波. 双场景类型遥感图像的配准拼接优化[J]. 浙江大学学报(工学版), 2019, 53(1): 107-114.

XU Yue, XU Zhi-hai, FENG Hua-jun, LI Qi, CHEN Yue-ting, XU Yi, ZHAO Hong-bo. Registration and stitching optimization for two-scene-type remote sensing image. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2019, 53(1): 107-114.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2019.01.012        http://www.zjujournals.com/eng/CN/Y2019/V53/I1/107

[1] MIKOLAJCZYK K, SCHMID C. Indexing based on scale invariant interest points[C]//Proceedings of the 8th IEEE International Conference on Computer Vision (ICCV). Vancouver:IEEE, 2001:525-531.
[2] MIKOLAJCZYK K, SCHMID C. Scale and affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004, 60(1):63-86.
[3] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[4] BAY H, ESS A, TUYTELAARS T, VAN GOOL L. Speeded-Up Robust Features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.
[5] RUBLEE E, RABAUD V, KONOLIGE K, et al. ORB:an efficient alternative to SIFT or SURF[C]//Proceedings of 2011 IEEE International Conference on Computer Vision (ICCV). Barcelona:IEEE, 2012:2564-2571.
[6] ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]//9th European Conference on Computer Vision. Graz, Austria:Springer, 2006:430-443.
[7] CALONDER M, LEPETIT V, STRECHA C, et al. Brief:binary robust independent elementary features[C]//11th European Conference on Computer Vision. Heraklion, Crete, Greece:Springer, 2010:778-792.
[8] 冯宇平, 戴明, 孙立悦, 等. 图像自动拼接融合的优化设计[J]. 光学精密工程, 2010, 18(2):470-476 FENG Yu-ping, DAI Ming, SUN Li-yue, et al. Optimized design of automatic image mosaic[J]. Optics and Precision Engineering, 2010, 18(2):470-476
[9] 何宾, 陶丹, 彭勃. 高实时性F-SIFT图像拼接算法[J]. 红外与激光工程, 2013, 42(增2):440-444 HE Bin, TAO Dan, PENG Bo. High real-time F-SIFT image mosaic algorithm[J]. Infrared and Laser Engineering, 2013, 42(Suppl. 2):440-444
[10] 李玉峰, 李广泽, 谷绍湖, 等. 基于区域分块与尺度不变特征变换的图像拼接算法[J]. 光学精密工程, 2016, 24(5):1197-1205 LI Yu-feng, LI Guang-ze, GU Shao-hu, et al. Image mosaic algorithm based on area blocking and SIFT[J]. Optics and Precision Engineering, 2016, 24(5):1197-1205
[11] GAO J, KIM S J, BROWN M S. Constructing image panoramas using dual-homography warping[C]//Proceedings of 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs:IEEE, 2011:49-56.
[12] CHEN J, FENG H, PAN K, et al. An optimization method for registration and mosaicking of remote sensing images[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(2):697-703.
[13] WU X, ZHAO Q, BU W. A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors[J]. Pattern Recognition, 2014, 47(10):3314-3326.
[14] WANG Z, KIEU H, NGUYEN H, et al. Digital image correlation in experimental mechanics and image registration in computer vision:similarities, differences and complements[J]. Optics and Lasers in Engineering, 2015, 65(1):18-27.
[15] SZELISKI R. Image alignment and stitching:a tutorial[J]. Foundations and Trends® in Computer Graphics and Vision, 2006, 2(1):1-104.
[16] CHANG C H, SATO Y, CHUANG Y Y. Shape-preserving half-projective warps for image stitching[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus:IEEE, 2014:3254-3261.
[17] BRINK A D. Image models and the definition of image entropy applied to the problem of unsupervised segmentation[D]. Johannesburg:University of the Witwatersrand, 2016.

[1] 苏慧, 冯华君, 徐之海, 李奇, 陈跃庭. 基于数值保真项优化的TDI遥感图像复原方法[J]. 浙江大学学报(工学版), 2018, 52(4): 674-679.
[2] 付勇勇, 王旭航, 邓劲松, 叶自然, 周梦梦, 尤淑撑, 关涛. 采用国产GF-2遥感影像的复杂水网平原水体信息提取[J]. 浙江大学学报(工学版), 2017, 51(12): 2474-2480.
[3] 赵辽英, 陈小芬, 厉小润. 变化向量分析结合光谱解混的高光谱变化检测[J]. 浙江大学学报(工学版), 2017, 51(10): 1912-1919.