Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2120-2127    DOI: 10.3785/j.issn.1008-973X.2018.11.010
机械与能源工程     
基于遗传蝙蝠算法的选择性拆卸序列规划
朱卓悦1, 徐志刚2, 沈卫东2, 杨得玉2
1. 山东大学 深圳研究院, 广东 深圳 518000;
2. 山东大学 机械工程学院, 山东 济南 250061
Selective-disassembly sequence planning based on genetic-bat algorithm
ZHU Zhuo-yue1, XU Zhi-gang2, SHEN Wei-dong2, YANG De-yu2
1. Shenzhen Research Institute of Shandong University, Shenzhen 518000, China;
2. School of Mechanical Engineering, Shandong University, Jinan 250061, China
 全文: PDF(1327 KB)   HTML
摘要:

针对产品选择性拆卸序列规划问题,提出一种基于遗传蝙蝠算法的产品拆卸序列规划方法.利用Python语言对传统蝙蝠算法进行离散化处理,并在种群更新过程中引入遗传算法的交叉与变异机制,生成遗传蝙蝠算法,以增强解搜索的多样性;在构建适应度函数模型时以拆卸工具的变化次数与拆卸方向的重新定位次数作为评价指标,同时加入零部件的回收收益指标,使适应度函数更加完善.以工业机械臂为实例,利用所提方法进行产品拆卸序列规划求解,对比传统蝙蝠算法以及遗传算法的求解结果,发现在一定的种群数目下,所提方法收敛时间较短;在不同种群数目下,所提方法得到的适应度函数最优值质量较高,从而验证了遗传蝙蝠算法的搜索优越性.

Abstract:

A method based on genetic-bat algorithm (GBA) was proposed to resolve the selective disassembly sequence planning (SDSP) problem. The traditional bat algorithm was discretized by Python and the crossover mutation mechanism of genetic algorithm was introduced in the process of population regeneration to generate GBA and to improve the diversity of the search algorithm. The fitness function model was constructed, with the recovery benefit of the disassembly parts, changes of disassembly directions and disassembly tools as the evaluation indexes. The industrial mechanical arm was studied as an instance to compare traditional bat algorithm (BA) and genetic algorithm (GA). Results showed that the convergence time of GBA was shorter when the population number was defined, and under different population numbers, the optimal value of fitness function of GBA was higher. The superiority of the GBA was verified.

收稿日期: 2017-11-01 出版日期: 2018-11-22
CLC:  TH122  
基金资助:

国家自然科学基金资助项目(61272017);深圳市科技创新委员会资助项目(JCYJ20160510165328965)

通讯作者: 徐志刚,男,教授.orcid.org/0000-0002-7428-4611.     E-mail: zhgxu@sdu.edu.cn
作者简介: 朱卓悦(1993-),女,硕士生,从事再制造与二次开发研究.orcid.org/0000-0002-2302-1811.E-mail:neu61zzy@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

朱卓悦, 徐志刚, 沈卫东, 杨得玉. 基于遗传蝙蝠算法的选择性拆卸序列规划[J]. 浙江大学学报(工学版), 2018, 52(11): 2120-2127.

ZHU Zhuo-yue, XU Zhi-gang, SHEN Wei-dong, YANG De-yu. Selective-disassembly sequence planning based on genetic-bat algorithm. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2120-2127.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.11.010        http://www.zjujournals.com/eng/CN/Y2018/V52/I11/2120

[1] KANNAN D. Evaluation of green manufacturing practices using a hybrid MCDM model combining DANP with PROMETHEE[J]. International Journal of Production Research, 2015, 53(21):6344-6371.
[2] 王峻峰, 李世其, 刘继红. 面向绿色制造的产品选择拆卸技术研究[J]. 计算机集成制造系统, 2007, 13(6):1097-1102 WANG Jun-feng, LI Shi-qi, LIU Ji-hong. Selective disassembly planning for product green manufacturing[J]. Computer Integrated Manufacturing Systems, 2007, 13(6):1097-1102
[3] 张秀芬, 张树有. 基于粒子群算法的产品拆卸序列规划方法[J]. 计算机集成制造系统, 2009, 15(3):508-514 ZHANG Xiu-fen, ZHANG Shu-you. Product disassembly sequence planning based on particle swarm optimization algorithm[J]. Computer Integrated Manufacturing Systems, 2009, 15(3):508-514
[4] 张秀芬, 蔚刚, 王磊, 等. 支持复杂产品并行拆卸序列规划的遗传算法[J]. 计算机辅助设计与图形学学报, 2015, 27(7):1327-1333 ZHANG Xiu-fen, WEI Gang, WANG Lei, et al. Parallel disassembly sequence planning for complex productsbased on genetic algorithm[J]. Journal of Computer-Aided Design and Computer Graphics, 2015, 27(7):1327-1333
[5] 焦庆龙, 徐达, 李闯. 基于花朵授粉算法的产品拆卸序列规划[J]. 计算机集成制造系统, 2016, 22(12):2791-2799 JIAO Qing-long, XU Da, LI Chuang. Product disassembly sequence planning based on flower pollination algorithm[J]. Computer Integrated Manufacturing Systems, 2016, 22(12):2791-2799
[6] FABIO G. Disassembly depth distribution for ease of service:a rule-based approach[J]. Journal of Engineering Design, 2008, 21(4):375-411.
[7] 韩建升. 基于遗传算法的拆卸序列规划研究[D]. 武汉:华中科技大学, 2007:41-49. HAN Jian-sheng. Research on disassembly sequence planning based on genetic algorithms[D]. Wuhan:Huazhong University of Science and Technology, 2007:41-49.
[8] 章小红, 李世其, 王峻峰, 等. 基于蚁群算法的单目标选择性拆卸序列规划研究[J]. 计算机集成制造系统, 2007, 13(6):1109-1114 ZHANG Xiao-hong, LI Shi-qi, WANG Jun-feng, et al. Single object selective disassembly sequence planning based on ant colony algorithm[J]. Computer Integrated Manufacturing Systems, 2007, 13(6):1109-1114
[9] 张秀芬, 张树有, 伊国栋, 等. 面向复杂机械产品的目标选择性拆卸序列规划方法[J]. 机械工程学报, 2010, 46(11):172-178 ZHANG Xiu-fen, ZHANG Shu-you, YI Guo-dong, et al. Object selective disassembly sequence planning for complex mechanical products[J]. Journal of Mechanical Engineering, 2010, 46(11):172-178
[10] 施英莹, 刘志峰, 张洪潮, 等. 基于蟑螂算法的产品拆卸序列规划[J]. 合肥工业大学学报自然科学版, 2011, 34(11):1601-1605 Shi Ying-ying, Liu Zhi-feng, Zhang Hong-chao, et al. Product disassembly sequence planning based on cockroach swarm optimization[J]. Journal of Hefei University of Technology:Natural Science Edition, 2011, 34(11):1601-1605
[11] 刘志峰, 胡迪, 高洋, 等. 基于贪婪算法的产品拆卸序列规划[J]. 中国机械工程, 2011, 22(18):2162-2166 LIU Zhi-feng, HU Di, GAO Yang, et al. Product disassembly sequence planning based on greedy algorithm[J]. China Mechanical Engineering, 2011, 22(18):2162-2166
[12] Yang X. A new metaheuristic bat-inspired algorithm[J]. Computer Knowledge and Technology, 2010, 284:65-74.
[13] Yang X. Bat algorithm for multi-objective optimization[J]. International Journal of Bio-Inspired Computation, 2012, 3(5):267-274.
[14] Yang X, Gandomi A. Bat algorithm:a novel approach for global engineering optimization[J]. Engineering Computations, 2012, 29(5):464-483.
[15] 彭敏. 基于差分变异蝙蝠算法的装配序列规划方法研究[D]. 湘潭:湘潭大学, 2014:4-5. Peng Min. Research on assembly sequence planning based on differential mutation bat algorithm[D]. Xiangtan:Xiangtan University, 2014:4-5.
[16] 李枝勇, 马良, 张惠珍. 蝙蝠算法在多目标多选择背包问题中的应用[J]. 计算机仿真, 2013, 30(10):350-353 LI Zhi-yong, MA Liang, ZHANG Hui-zhen. Application of bat algorithm in multi-objective and multi-choice knapsack problem[J]. Computer Simulation, 2013, 30(10):350-353
[17] 李枝勇, 马良, 张惠珍. 遗传变异蝙蝠算法在0-1背包问题上的应用[J]. 计算机工程与应用, 2014, 50(11):49-52 LI Zhi-yong, MA Liang, ZHANG Hui-zhen. Genetic mutation bat algorithm for 0-1 knapsack problem[J]. Computer Engineering and Applications, 2014, 50(11):49-52
[18] 韩福霞, 刘宏志. 基于蝙蝠算法的信息工程监理多目标优化研究[J]. 现代计算机, 2013(13):3-6 HAN Fu-xia, LIU Hong-zhi. Research on multi-objective optimization problems in information engineering surveillance based on bat algorithm[J]. Modern Computer, 2013(13):3-6
[19] 盛晓华, 叶春明. 蝙蝠算法在PFSP调度问题中的应用研究[J]. 工业工程, 2013, 16(1):119-124 SHENG Xiao-hua, YE Chun-ming. Application of bat algorithm to permutation flow-shop scheduling problem[J]. Industrial Engineering Journal, 2013, 16(1):119-124
[20] 黄光球, 赵魏娟, 陆秋琴. 求解大规模优化问题的可全局收敛蝙蝠算法[J]. 计算机应用研究, 2013, 30(5):1323-1328 HUANG Guang-qiu, ZHAO Wei-juan, LU Qiu-qin. Bat algorithm with global convergence for solving large-scale optimization problem[J]. Application Research of Computers, 2013, 30(5):1323-1328
[21] 吴昊, 左洪福. 基于改进遗传算法的选择性拆卸序列规划[J]. 航空学报, 2009, 30(5):952-958 WU Hao, ZUO Hong-fu. Selective disassembly sequence planning based on improved genetic algorithm[J]. Acta Aeronautica Et Astronautica Sinica, 2009, 30(5):952-958
[22] 黄保群. 基于图论的拆卸模型及拆卸序列规划的研究[D]. 桂林:桂林电子科技大学, 2006:6-20. HUANG Bao-qun. Research on demolition model and disassembly sequence planning based on graph theory[D]. Guilin:Guilin University of Electronic Science and Technology, 2006:6-20.
[23] SMITH S, HSU L, SMITH G. Partial disassmbly sequence planning based on cost-benefit analysis[J]. Journal of Cleaner Production, 2016, 139:729-739.
[24] WANG Heng-yu. Disassembly sequence planning for end-of-life products[D]. Winnipeg:University of Manitoba, 2016:72-75.

[1] 应申舜, 林绿高, 计时鸣. 基于模态参数验证的机床结构件优化设计[J]. 浙江大学学报(工学版), 2018, 52(10): 1880-1887.
[2] 刘凯, 曹毅, 周睿, 葛姝翌, 丁锐. 一移两转平板折展柔性铰链的建模及优化[J]. 浙江大学学报(工学版), 2017, 51(12): 2399-2407.