Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (11): 2136-2141    DOI: 10.3785/j.issn.1008-973X.2018.11.012
吴雪松, 程乐鸣, 闫珂, 张维国
浙江大学 热能工程研究所 能源清洁利用国家重点实验室, 浙江 杭州 310027
Experimental study of industrial low nitrogen porous media burner
WU Xue-song, CHENG Le-ming, YAN Ke, ZHANG Wei-guo
State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1470 KB)   HTML

通过多孔介质燃烧器的燃烧试验研究低氮燃烧器的稳燃范围,探究在不同功率(50~100 kW)和当量比(0.6~1.0)下燃烧器的氮氧化物(NOx)和一氧化碳(CO)的生成特性,探讨多孔介质直径对燃烧器燃烧产物的影响.结果表明,燃烧器稳燃上限和稳燃下限均随当量比的增大而增大,并且稳燃上限的增幅大于稳燃下限;天然气在多孔介质内燃烧时生成的氮氧化物主要为NO,其排放质量浓度随燃烧器功率和燃烧当量比的增大而增大.在试验工况范围内,氮氧化物排放质量浓度低于30 mg/m3,工业级多孔介质燃烧器具有低氮排放特性;CO排放质量浓度随当量比的增大先降低后升高,在当量比小于0.9时,CO排放质量浓度低于56 mg/m3;为了同时实现较低的NOx和CO排放,燃烧器运行的当量比范围应控制在0.7~0.8.研究的2种多孔介质直径对燃烧器的NOx和CO排放质量浓度没有明显影响.


A combustion test of porous media burner was conducted to investigate the stability limits of low nitrogen burner. Characteristics of nitrogen oxide (NOx) and carbon monoxide (CO) emissions of the burner at varied burner powers from 50 kWto 100 kW and varied equivalence ratios from 0.6 to 1.0 were presented. The influence of porous media diameter on the combustion production was also studied. Results showed that the stable operating range extended and shifted to larger values while the equivalence ratio increased, and the upper limit increased greater than the inferior limit. NO was the main component of oxynitride when natural gas combusted in the porous media burner. The NOx emission increased with the burner power and the equivalence ration. The maximum NOx emission of the burner was below 30 mg/m3 for all operating conditions. The industrial porous burner has low NOx emission characteristics. CO concentration increased after a decrease with the rise of equivalence ratio, and it was below 56 mg/m3 when the equivalence ratio was smaller than 0.9. To achieve low NOx and CO emissions at the same time, the equivalence ratio should be controlled between 0.7 and 0.8. There is no significant changes in NOx and CO emissions for the two porous media diameters.

收稿日期: 2017-09-19 出版日期: 2018-11-22
CLC:  TK223  


通讯作者: 程乐鸣,男,教授     E-mail:
作者简介: 吴雪松(1993-),男,硕士生,从事多孔介质燃烧器研究
E-mail Alert


吴雪松, 程乐鸣, 闫珂, 张维国. 工业级多孔介质低氮燃烧器试验研究[J]. 浙江大学学报(工学版), 2018, 52(11): 2136-2141.

WU Xue-song, CHENG Le-ming, YAN Ke, ZHANG Wei-guo. Experimental study of industrial low nitrogen porous media burner. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(11): 2136-2141.


[1] SHINOMORI K, KATOU K, SHIMOKURI D, et al. NOx emission characteristics and aerodynamic structure of a self-recirculation type burner for small boilers[J]. Proceedings of the Combustion Institute, 2011, 33(2):2735-2742.
[2] NOOR M M, WANDEL A P, YUSAF T. Design and development of mild combustion burner[J]. Journal of Mechanical Engineering and Sciences, 2013, 5:662-676.
[3] BALLESTER J, SANZ A, GONZALEZ M A. Investigation of the characteristics and stability of air-staged flames[J]. Experimental Thermal and Fluid Science, 2008, 32(3):776-790.
[4] 宋少鹏, 卓建坤, 李娜, 等. 燃料分级与烟气再循环对天然气低氮燃烧特性影响机理[J]. 中国电机工程学报, 2016, 36(24):6849-6858 SONG Shao-peng, ZHUO Jian-kun, LI Na, et al. Low NOx combustion mechanism of a natural gas burner with fuel-staged and flue gas recirculation[J]. Proceedings of the CSEE, 2016, 36(24):6849-6858
[5] COZZI F, COGHE A. Behavior of hydrogen-enriched non-premixed swirled natural gas flames[J]. International Journal of Hydrogen Energy, 2006, 31(6):669-677.
[6] GALLETTI C, PARENTE A, TOGNOTTI L. Numerical and experimental investigation of a mild combustion burner[J]. Combustion and flame, 2007, 151(4):649-664.
[7] 段毅. 内嵌换热面多孔介质燃烧与传热研究[D]. 杭州:浙江大学, 2017:20-36. DUAN Yi. Studies combustion and heat transfer characteristics in porous media with embedded heat exchangers[D]. Hangzhou:Zhejiang University, 2017:20-36.
[8] WEINBERG F J. Combustion temperatures:the future[J]. Nature, 1973(06):100-102.
[9] GAO H B, QU Z G, FENG X B, et al. Methane/air premixed combustion in a two-layer porous burner with different foam materials[J]. Fuel, 2014, 115:154-161.
[10] 张俊春. 多孔介质燃烧处理低热值气体及燃烧不稳定性研究[D]. 杭州:浙江大学, 2014:37-52. ZHANG Jun-chun. Porous media combustion for low calorific gases and combustion instabilities[D]. Hangzhou:Zhejiang University, 2014:37-52.
[11] 黄冉思思, 程乐鸣, 邱坤赞, 等. 中、低热值预混气体在双层多孔介质中的贫燃特性[J]. 浙江大学学报:工学版, 2015, 49(9):1783-1789 HUANG Ran-si-si, CHENG Le-ming, QIU Kun-zan, et al. Lean combustion of moderate/low calorific premixed gases in two-layer porous burner[J]. Journal of Zhejiang University:Engineering Science, 2015, 49(9):1783-1789
[12] KERAMIOTIS C, STELZNER B, TRIMIS D, et al. Porous burners for low emission combustion:an experimental investigation[J]. Energy, 2012, 45(1):213-219.
[13] DEHAJ M S, EBRAHIMI R, SHAMS M, et al. Experimental analysis of natural gas combustion in a porous burner[J]. Experimental Thermal and Fluid Science, 2017, 84:134-143.
[14] 王恩宇. 气体燃料在渐变型多孔介质中的预混燃烧机理研究[D]. 杭州:浙江大学, 2004:61-134. WANG En-yu. Study on premixed combustion mechanism of fuel gas in gradually-varied porous media[D]. Hangzhou:Zhejiang University, 2004:61-134.
[15] SMUCKER M T, ELLZEY J L. Computational and experimental study of a two-section porous burner[J]. Combustion Science and Technology, 2004, 176(8):1171-1189.
[16] FRANCISCO J R W, RUA F, COSTA M, et al. On the combustion of hydrogen-rich gaseous fuels with low calorific value in a porous burner[J]. Energy and Fuels, 2009, 24(2):880-887.
[17] BUBNOVICH V, TOLEDO M, HENRIQUEZ L, et al. Flame stabilization between two beds of alumina balls in a porous burner[J]. Applied Thermal Engineering, 2010, 30(2/3):92-95.
[18] GAO H, QU Z, TAO W, et al. Experimental study of biogas combustion in a two-layer packed bed burner[J]. Energy and Fuels, 2011, 25(7):2887-2895.
[19] GAO H, QU Z, HE Y, et al. Experimental study of combustion in a double-layer burner packed with alumina pellets of different diameters[J]. Applied Energy, 2012, 100:295-302.
[20] BARRA A J, DIEPVENS G, ELLZEY J L, et al. Numerical study of the effects of material properties on flame stabilization in a porous burner[J]. Combustion and Flame, 2003, 134(4):369-379.
[21] GAO H, QU Z, TAO W, et al. Experimental investigation of methane/(Ar, N2, CO2)-air mixture combustion in a two-layer packed bed burner[J]. Experimental Thermal and Fluid Science, 2013, 44:599-606.
[22] MATHIS W M, ELLZEY J L. Flame stabilization, operating range, and emissions for a methane/air porous burner[J]. Combustion Science and Technology, 2003, 175(5):825-839.
[23] KERAMIOTIS C, KATOUFA M, VOURLIOTAKIS G, et al. Experimental investigation of a radiant porous burner performance with simulated natural gas, biogas and synthesis gas fuel blends[J]. Fuel, 2015, 158:835-842.
[24] KERAMIOTIS C, FOUNTI M A. An experimental investigation of stability and operation of a biogas fueled porous burner[J]. Fuel, 2013, 103:278-284.
[25] ARRIETA C E, GARCIA A M, AMELL A A. Experimental study of the combustion of natural gas and high-hydrogen content syngases in a radiant porous media burner[J]. International Journal of Hydrogen Energy, 2017, 42(17):12669-12680.
[26] RORTVEIT G J, ZEPTER K, SKREIBERG Ø, et al. A comparison of low-NOx burners for combustion ofmethane and hydrogen mixtures[J]. Proceedings of the Combustion Institute, 2002, 29(1):1123-1129.
[27] BUBNOVICH V, HENRIQUEZ L, GNESDILOV N. Numerical study of the effect of the diameter of alumina balls on flame stabilization in a porous-medium burner[J]. Numerical Heat Transfer Part A Applications, 2007, 52(3):275-295.

No related articles found!