Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (12): 2285-2294    DOI: 10.3785/j.issn.1008-973X.2018.12.006
土木工程     
锈蚀对钢材低周疲劳性能的影响分析
宋方远, 谢旭
浙江大学 建筑工程学院, 浙江 杭州 310058
Effect analysis of corrosion on low cycle fatigue behavior of structural steel
SONG Fang-yuan, XIE Xu
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1686 KB)   HTML
摘要:

以我国钢桥结构中使用较多的Q345钢材为例,对人工加速锈蚀试样进行2种应变幅下的低周疲劳试验研究.应用精细的有限元模型分析,基于微观断裂判据——循环空穴扩张模型(CVGM),对锈蚀钢材的低周疲劳断裂机理进行分析,讨论蚀坑对钢材低周疲劳(LDF)寿命的影响机理,并验证方法的有效性.结果表明,质量损失率约为6%的锈蚀Q345钢材试样的低周疲劳寿命比无锈蚀钢材减少约30%;完好试样与锈蚀试样的稳定滞回环形状几乎相同,锈蚀对钢材承载能力影响较小;在1%应变幅作用下,试样破坏现象为脆性的低周疲劳破坏,而在2.5%应变幅作用的循环荷载下,试样发生延性的超低周疲劳破坏.锈蚀引起钢材超低周疲劳寿命下降程度与蚀坑位置的应变集中有关,随着应变集中程度的增加,疲劳寿命的下降增大.

Abstract:

The laboratory low cycle fatigue (LCF) tests of accelerated corrosion Q345 steel specimens under certain strain amplitudes were conducted. Based on finite element model (FEM) analysis and micromechanical fracture criteria cyclic void growth model (CVGM), the LCF fracture mechanism of the specimens was analyzed, and the influence mechanism of pitting corrosion on LCF life of the steel was discussed. Results show that the LCF life of corroded Q345 steel specimens with about 6% mass loss is reduced by approximately 30% in comparison with the intact ones; the shapes of stable hysteresis curves of intact specimens and corroded ones are found to be almost identical, and corrosion has little influence on the bearing capacity of steel. The fatigue test results show that specimens under 1% strain amplitude cyclic loading present brittle fracture, however, those under 2.5% strain amplitude present ductile fracture. This work indicates that LCF life reduction of corroded steel is mainly caused by strain concentration at the location of pitting corrosion, and the LCF life decreases with the increase of strain concentration degree.

收稿日期: 2017-11-08 出版日期: 2018-12-13
CLC:  U444  
基金资助:

国家自然科学基金资助项目(51378460)

通讯作者: 谢旭,男,教授.orcid.org/0000-0002-4247-0487.     E-mail: xiexu@zju.edu.cn
作者简介: 宋方远(1990-),男,博士生,从事钢结构桥梁抗震研究.orcid.org/0000-0002-2056-6146.E-mail:cefysong@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

宋方远, 谢旭. 锈蚀对钢材低周疲劳性能的影响分析[J]. 浙江大学学报(工学版), 2018, 52(12): 2285-2294.

SONG Fang-yuan, XIE Xu. Effect analysis of corrosion on low cycle fatigue behavior of structural steel. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(12): 2285-2294.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.12.006        http://www.zjujournals.com/eng/CN/Y2018/V52/I12/2285

[1] DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
[2] DU Y G, CLARK L A, CHAN A H C. Effect of corrosion on ductility of reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(7):407-419.
[3] APOSTOLOPOULOS C A. Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue[J]. Construction and Building Materials, 2007, 21(7):1447-1456.
[4] HAWILEH R A, ABDALLA J A, TAMIMI A A, et al. Behavior of corroded steel reinforcing bars under monotonic and cyclic loadings[J]. Mechanics of Advanced Materials and Structures, 2011, 18(3):218-224.
[5] 鋼構造委員会鋼構造震災調査特別小委員会. 阪神·淡路大震災における鋼構造物の震災の実態と分析[J]. 土木学会論文集, 2000, 647:17-30 Subcommittee on Investigation of Seismic Damage of Steel Structure. Investigation of causes of damage to steel structure on Hanshin-Awaji earthquake disaster[J]. Proceedings of the Japan Society of Civil Engineers, 2000, 647:17-30
[6] MAHIN S A. Lessons from damage to steel building during the Northridge earthquake[J]. Engineering Structures, 1998, 20(4-6):261-270.
[7] 三木千寿, 四十沢利康, 穴見健吾. 鋼製橋脚ラーメン隅角部の地震時脆性破壊[J]. 土木学会論文集, 1998, 591:273-281 MIKI Chitoshi, AIZAWA Toshiyasu, ANAMI Kengo. Brittle fracture at beam-to-column connection during earthquake[J]. Proceedings of the Japan Society of Civil Engineers, 1998, 591:273-281
[8] 葛漢彬, 藤江渉, 田島僚. 鋼構造物の延性き裂発生の評価法の実験データによる検証[J]. 構造工学論文集A, 2009, 55:617-628 GE Hai-bin, FUJIE Wataru, TAJIMA Ryo. Experimental verification of an evaluation method for predicting the ductile crack initiation in steel structures[J]. Journal of Structural Engineering, JSCE, 2009, 55:617-628
[9] GE H B, LUO X Q. A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue[J]. Journal of Earthquake and Tsunami, 2011, 5(2):83-99.
[10] GE H B, KANG L. Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J]. Engineering Structures, 2014, 59:809-820.
[11] HANJI T, PARK J E, TATEISHI K. Low cycle fatigue assessments of corner welded joints based on local strain approach[J]. International Journal of Steel Structures, 2014, 14(3):579-587.
[12] HANJI T, TATEISHI K, MINAMI K, et al. Extremely low cycle fatigue assessment for welded joints based on peak strain approach[J]. Journal of Japan Society of Civil Engineers Ser A1, 2006, 62(1):101-109.
[13] KANVINDE A M, DEIERLEIN G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(6):701-712.
[14] KANVINDE A M, DEIERLEIN G G. Validation of cyclic void growth model for fracture initiation in blunt notch and dog-bone steel specimens[J]. Journal of Structural Engineering, 2008, 134(9):1528-1537.
[15] KANVINDE A M, DEIERLEIN G G. The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12):1907-1918.
[16] 石永久, 熊俊, 王元清. 钢框架梁柱节点焊缝损伤性能研究Ⅰ:试验研究[J]. 建筑结构学报, 2012, 33(3):48-55 SHI Yong-jiu, XIONG Jun, WANG Yuan-qing. Study on damage behavior of weld of beam-to-column connection in steel frame I:experiment[J]. Journal of Building Structures, 2012, 33(3):48-55
[17] ZHOU H, WANG Y Q, SHI Y J, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48(2):90-100.
[18] 廖芳芳, 王伟, 陈以一. 往复荷载下钢结构节点的超低周疲劳断裂预测[J]. 同济大学学报:自然科学版, 2014, 42(4):539-546 LIAO Fang-fang, WANG Wei, CHEN Yi-yi. Extremely low cycle fatigue fracture prediction of steel connections under cyclic loading[J]. Journal of Tongji University:Natural Science, 2014, 42(4):539-546
[19] 廖燕华, 谢旭, 唐站站. Q345qC钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报:工学版, 2018, 52(1):73-81 LIAO Yan-hua, XIE Xu, TANG Zhan-zhan. Low cycle fatigue properties and fracture mechanism of Q345qC steel and its welded joint[J]. Journal of Zhejiang University:Engineering Science, 2018, 52(1):73-81
[20] 赵婷婷, 徐善华, 孔正义, 等. 碳钢人工加速腐蚀试验研究[J]. 水利与建筑工程学报, 2010, 8(2):13-15 ZHAO Ting-ting, XU Shan-hua, KONG Zheng-yi, et al. Study on accelerated corrosion tests of carbon steel[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(2):13-15
[21] 中国科学院金属研究所. GB/T15248-2008金属材料轴向等幅低循环疲劳试验方法[S]. 北京:中国标准出版社, 2008.
[22] LIAO F F, WANG W, CHEN Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174.
[23] CHI W M. Prediction of steel connection failure using computational fracture mechanics[D]. California:Stanford University, 1999.

[1] 廖燕华, 谢旭, 唐站站. Q345qC钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报(工学版), 2018, 52(1): 73-81.