[1] DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3):135-147.
[2] DU Y G, CLARK L A, CHAN A H C. Effect of corrosion on ductility of reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(7):407-419.
[3] APOSTOLOPOULOS C A. Mechanical behavior of corroded reinforcing steel bars S500s tempcore under low cycle fatigue[J]. Construction and Building Materials, 2007, 21(7):1447-1456.
[4] HAWILEH R A, ABDALLA J A, TAMIMI A A, et al. Behavior of corroded steel reinforcing bars under monotonic and cyclic loadings[J]. Mechanics of Advanced Materials and Structures, 2011, 18(3):218-224.
[5] 鋼構造委員会鋼構造震災調査特別小委員会. 阪神·淡路大震災における鋼構造物の震災の実態と分析[J]. 土木学会論文集, 2000, 647:17-30 Subcommittee on Investigation of Seismic Damage of Steel Structure. Investigation of causes of damage to steel structure on Hanshin-Awaji earthquake disaster[J]. Proceedings of the Japan Society of Civil Engineers, 2000, 647:17-30
[6] MAHIN S A. Lessons from damage to steel building during the Northridge earthquake[J]. Engineering Structures, 1998, 20(4-6):261-270.
[7] 三木千寿, 四十沢利康, 穴見健吾. 鋼製橋脚ラーメン隅角部の地震時脆性破壊[J]. 土木学会論文集, 1998, 591:273-281 MIKI Chitoshi, AIZAWA Toshiyasu, ANAMI Kengo. Brittle fracture at beam-to-column connection during earthquake[J]. Proceedings of the Japan Society of Civil Engineers, 1998, 591:273-281
[8] 葛漢彬, 藤江渉, 田島僚. 鋼構造物の延性き裂発生の評価法の実験データによる検証[J]. 構造工学論文集A, 2009, 55:617-628 GE Hai-bin, FUJIE Wataru, TAJIMA Ryo. Experimental verification of an evaluation method for predicting the ductile crack initiation in steel structures[J]. Journal of Structural Engineering, JSCE, 2009, 55:617-628
[9] GE H B, LUO X Q. A seismic performance evaluation method for steel structures against local buckling and extra-low cycle fatigue[J]. Journal of Earthquake and Tsunami, 2011, 5(2):83-99.
[10] GE H B, KANG L. Ductile crack initiation and propagation in steel bridge piers subjected to random cyclic loading[J]. Engineering Structures, 2014, 59:809-820.
[11] HANJI T, PARK J E, TATEISHI K. Low cycle fatigue assessments of corner welded joints based on local strain approach[J]. International Journal of Steel Structures, 2014, 14(3):579-587.
[12] HANJI T, TATEISHI K, MINAMI K, et al. Extremely low cycle fatigue assessment for welded joints based on peak strain approach[J]. Journal of Japan Society of Civil Engineers Ser A1, 2006, 62(1):101-109.
[13] KANVINDE A M, DEIERLEIN G G. Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(6):701-712.
[14] KANVINDE A M, DEIERLEIN G G. Validation of cyclic void growth model for fracture initiation in blunt notch and dog-bone steel specimens[J]. Journal of Structural Engineering, 2008, 134(9):1528-1537.
[15] KANVINDE A M, DEIERLEIN G G. The void growth model and the stress modified critical strain model to predict ductile fracture in structural steels[J]. Journal of Structural Engineering, 2006, 132(12):1907-1918.
[16] 石永久, 熊俊, 王元清. 钢框架梁柱节点焊缝损伤性能研究Ⅰ:试验研究[J]. 建筑结构学报, 2012, 33(3):48-55 SHI Yong-jiu, XIONG Jun, WANG Yuan-qing. Study on damage behavior of weld of beam-to-column connection in steel frame I:experiment[J]. Journal of Building Structures, 2012, 33(3):48-55
[17] ZHOU H, WANG Y Q, SHI Y J, et al. Extremely low cycle fatigue prediction of steel beam-to-column connection by using a micro-mechanics based fracture model[J]. International Journal of Fatigue, 2013, 48(2):90-100.
[18] 廖芳芳, 王伟, 陈以一. 往复荷载下钢结构节点的超低周疲劳断裂预测[J]. 同济大学学报:自然科学版, 2014, 42(4):539-546 LIAO Fang-fang, WANG Wei, CHEN Yi-yi. Extremely low cycle fatigue fracture prediction of steel connections under cyclic loading[J]. Journal of Tongji University:Natural Science, 2014, 42(4):539-546
[19] 廖燕华, 谢旭, 唐站站. Q345qC钢及焊接接头低周疲劳性能与断裂机理[J]. 浙江大学学报:工学版, 2018, 52(1):73-81 LIAO Yan-hua, XIE Xu, TANG Zhan-zhan. Low cycle fatigue properties and fracture mechanism of Q345qC steel and its welded joint[J]. Journal of Zhejiang University:Engineering Science, 2018, 52(1):73-81
[20] 赵婷婷, 徐善华, 孔正义, 等. 碳钢人工加速腐蚀试验研究[J]. 水利与建筑工程学报, 2010, 8(2):13-15 ZHAO Ting-ting, XU Shan-hua, KONG Zheng-yi, et al. Study on accelerated corrosion tests of carbon steel[J]. Journal of Water Resources and Architectural Engineering, 2010, 8(2):13-15
[21] 中国科学院金属研究所. GB/T15248-2008金属材料轴向等幅低循环疲劳试验方法[S]. 北京:中国标准出版社, 2008.
[22] LIAO F F, WANG W, CHEN Y Y. Parameter calibrations and application of micromechanical fracture models of structural steels[J]. Structural Engineering and Mechanics, 2012, 42(2):153-174.
[23] CHI W M. Prediction of steel connection failure using computational fracture mechanics[D]. California:Stanford University, 1999. |