Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (8): 1575-1582    DOI: 10.3785/j.issn.1008-973X.2018.08.018
土木与水利工程     
多点激励下高烈度区接触网系统地震响应分析
徐军1, 李英民1, 杨旭尧2, 胡晓平1
1. 重庆大学 土木工程学院, 重庆 400045;
2. 中铁电气化局宝鸡器材有限公司, 陕西 宝鸡 721000
Seismic response of overhead catenary system in high-intensity seismic zones under multi-support excitations
XU Jun1, LI Ying-min1, YANG Xu-yao2, HU Xiao-ping1
1. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
2. Baoji Line Parts Co. Ltd of China Railway Electrification Bureau Group, Baoji 721000, China
 全文: PDF(1169 KB)   HTML
摘要:

以某高烈度区电气化铁路接触网系统为研究对象,建立考虑材料非线性和几何非线性特性的三维柱-线有限元模型.采用SMIQKE-II软件合成与规范反应谱相吻合的空间相关地震动时程,基于相对位移法进行接触网系统在一致激励、相干激励、行波激励和多点激励下的非线性时程分析,对比研究系统关键部件在不同地震激励模式下的响应规律.结果表明,多点激励明显放大接触网系统的地震响应,对接触线横向位移响应的放大最为显著,对支柱底部应力的放大相对较小;接触网系统地震响应的放大程度主要取决于激励方式与视波速的大小;为了得到接触网系统各关键部件的最不利地震响应,应该综合考虑多点激励的影响和场地条件,以选择合适的视波速进行抗震分析.

Abstract:

A three-dimensional finite element pole-wire system model with material and geometric nonlinearity was developed to analyze the overhead catenary system in high-intensity seismic zones. Spatially correlated ground motion time histories compatible with the normalized response spectum were generated by SIMQKE-ll software. Relative displacement-based nonlinear time history analyses of the overhead catenary system were conducted under uniform excitation, coherence excitation, traveling wave excitation and multi-support seismic excitations. Seismic response characteristics of the key parts in overhead catenary system under different excitation methods were analyzed and compared. Results show that the seismic responses of overhead catenary system are obviously amplified by multi-support excitations. The influence of multi-support excitations on the amplification of transverse displacement response of contact wires is the most significant, while the influence on stress at pole bottom sections is relatively small. The amplification of structural responses depend largely on the excitation method and traveling wave velocity. To get the most critical seismic response for all the key parts of overhead catenary system, multi-support excitations should be considered with proper site conditions and traveling wave velocities in the seismic analysis of overhead catenary systems.

收稿日期: 2017-06-19 出版日期: 2018-08-23
CLC:  U225  
基金资助:

中国中铁股份有限公司科技开发计划资助项目(2015-重大-20)

通讯作者: 李英民,男,教授.orcid.org/0000-0003-0079-4130.     E-mail: liyingmin@cqu.edu.cn
作者简介: 徐军(1986-),男,博士生,从事结构抗震研究.orcid.org/0000-0002-7823-2851.E-mail:junxusc@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

徐军, 李英民, 杨旭尧, 胡晓平. 多点激励下高烈度区接触网系统地震响应分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1575-1582.

XU Jun, LI Ying-min, YANG Xu-yao, HU Xiao-ping. Seismic response of overhead catenary system in high-intensity seismic zones under multi-support excitations. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(8): 1575-1582.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.08.018        http://www.zjujournals.com/eng/CN/Y2018/V52/I8/1575

[1] 于万聚. 高速电气化铁路接触网[M]. 成都:西南交通大学出版社, 2003:8
[2] 赵飞, 刘志刚, 张晓晓. 基于有限元的高速弓网系统动态性能仿真研究[J]. 铁道学报, 2012, 34(8):33-38 ZHAO Fei, LIU Zhi-gang, ZHANG Xiao-xiao. Simulation of high-speed pantograph system dynamic performance based on finite element model[J]. Journal of the China Railway Society, 2012, 34(8):33-38
[3] 宦荣华, 宋亚轻, 朱位秋. 基于相干分析的接触导线高度不平顺不利波长研究[J]. 浙江大学学报:工学版, 2013, 47(9):1599-1602 HUAN Rong-hua, SONG Ya-qing, ZHU Wei-qiu. Study of detrimental wavelengths of contact wire height irregularity based on coherence analysis[J]. Journal of Zhejiang University:Engineering Science, 2013, 47(9):1599-1602
[4] 曹树森, 柯坚, 邓斌, 等. 强风地区接触网动力稳定性分析[J]. 中国铁道科学, 2010, 31(4):79-84 CAO Shu-sen, KE Jian, DENG Bin, et al. The dynamic stability analysis of the catenary systems in strong wind area[J]. China Railway Science, 2010, 31(4):79-84
[5] 谢强, 支希, 李海若, 等. 高速铁路接触网系统气动弹性模型风洞试验研究[J]. 中国铁道科学, 2015, 36(3):73-80 XIE Qiang, ZHI Xi, LI Hai-ruo, et al. Wind tunnel test on aeroelastic model of catenary system for high speed railway[J]. China Railway Science, 2015, 36(3):73-80
[6] 汪宏睿, 刘志刚, 宋洋, 等. 高速铁路接触线气动参数仿真及风振响应研究[J]. 振动与冲击, 2015, 34(6):6-12 WANG Hong-rui, LIU Zhi-gang, SONG Yang, et al. Aerodynamic parameters simulation and wind-induced vibration responses of contact wire of high-speed rail way[J]. Journal of Vibration and Shock, 2015, 34(6):6-12
[7] 李群湛, 郭蕾, 舒泽亮, 等. 电气化铁路接触网在线防冰技术研究[J]. 铁道学报, 2013, 35(10):46-51 LI Qun-zhan, GUO Lei, SHU Ze-liang, et al. On-line anti-icing technology for catenary of electrified rail way[J]. Journal of the China Railway Society, 2013, 35(10):46-51
[8] 宋洋, 刘志刚, 汪宏睿. 高速铁路覆冰接触线气动系数研究与风振响应分析[J]. 铁道学报, 2014, 36(9):20-27 SONG Yang, LIU Zhi-gang, WANG Hong-rui. Study on aerodynamic parameters and wind vibration response of iced contact wires of high-speed railways[J]. Journal of the China Railway Society, 2014, 36(9):20-27
[9] 李默, 郭蕾, 关金发. 接触网覆冰脱冰动力响应的有限元仿真[J]. 铁道科学与工程学报, 2015, 12(3):643-649 LI Mo, GUO Lei, GUAN Jin-fa. Finite element simula tion of dynamic response of the catenary icing and de-icing[J]. Journal of Railway Science and Engine ering, 2015, 12(3):643-649
[10] KAZAMA M, NODA T. Damage statistics (summary of the 2011 off the pacific coast of Tohoku earthquake damage)[J]. Soils and Foundations, 2012, 52(5):780-792.
[11] 渡辺一功, 岩田道敏, 野澤伸一郎, 等. PC電化柱の損傷状況と補修方法に関する実験的研究[C]//コンク リート工学年次大会2012. 広島:日本コンクリート工学会, 2012:1123-1128
[12] 张俊, 谢强. 高速铁路接触网系统地震响应分析[J]. 铁路标准设计, 2017, 64(4):140-146 ZHANG Jun, XIE Qiang. Analysis of seismic response of high-speed railway catenary system[J]. Railway Standard Design, 2017, 64(4):140-146
[13] 张骞, 李红梅, 马莉, 等. 地震条件下高速铁路桥上接触网系统安全阈值[J]. 中国铁道科学, 2016, 37(2):64-69 ZHANG Qian, LI Hong-mei, MA Li, et al. Safety threshold for catenary system on bridge of high-speed railway under earthquake[J]. China Railway Science, 2016, 37(2):64-69
[14] 水谷司, 飯島怜, 武田智信, 等. 新幹線高架橋上の電車線柱の連成系地震応答解析およびTMDによる震動制御[J]. 土木学会論文集A1(構造·地震工学), 2016, 72(4):604-618 MIZUTANI T, ⅡJIMA R, TAKEDA T, et al. Seismic response analysis and vibration control by tuned mass damper of overhead catenary system poles on shinkan sen viaducts[J]. Journal of Japan Society of Civil Eng ineers, Ser A1:Structural Engineering and Earth quake Engineering, 2016, 72(4):604-618
[15] 潘旦光, 楼梦麟, 范立础. 多点输入下大跨度结构地震反应分析研究现状[J]. 同济大学学报:自然科学版, 2001, 29(10):1213-1219 PAN Dan-guang, LOU Meng-lin, FAN Li-chu. Status of seismic response analysis of long-span structures under multiple support excitations[J]. Journal of Tongji University, 2001, 29(10):1213-1219
[16] 全伟, 李宏男. 大跨结构多维多点输入抗震研究进展[J]. 防灾减灾工程学报, 2006, 26(3):343-351 QUAN Wei, LI Hong-nan. State-of-the-art review on multi-component multi-support seismic response anal ysis of long-span structures[J]. Journal of Disaster Prevention and Mitigation Engineering, 2006, 26(3):343-351
[17] 北京金土木软件技术有限公司, 中国建筑标准设计研究院. SAP2000中文版使用指南[M]. 2版. 北京:人民交通出版社, 2012:712-714
[18] 中国地震局. 中国地震动参数区划图:GB18306-2015[S]. 北京:中国标准出版社, 2015:206-209
[19] 中华人民共和国住房和城乡建设部. 电力设施抗震设计规范:GB50260-2013[S]. 北京:中国建筑工业出版社, 2013:12-15
[20] 薛素铎, 王雪生, 曹资. 基于新抗震规范的地震动随机模型参数研究[J]. 土木工程学报, 2003, 36(5):5-10 XUE Su-duo, WANG Xuesheng, CAO Zi. Parameters study on seismic random model based on the new seismic code[J]. China Civil Engineering Journal, 2003, 36(5):5-10
[21] VANMARCKE E H, ZAVONI E H, FENTON G A. Conditional simulation of spatially correlated earthquake ground motion[J]. ASCE Journal of Engineering Mechanics, 1993, 119(11):2333-2352.
[22] VANMARCKE E H, FENTON G A, ZAVONI E H. SIMQKE-Ⅱ-conditioned earthquake ground motion simulator:user's manual, version 2.1[M]. Princeton:Princeton University Press, 1999:20-21
[23] 田利, 李宏男, 黄连壮. 多点激励下输电塔-线体系的侧向地震反应分析[J]. 中国机电工程学报, 2008, 28(16):108-114 TIAN Li, LI Hong-nan, HAUNG Lian-zhuang. Lateral response of transmission tower-line system under mul tiple support excitations[J]. Proceedings of the CSEE, 2008, 28(16):108-114

No related articles found!