[1] 武亚军, 邹道敏, 唐军武, 等. 吹填软土植物垫层真空预压现场试验研究[J]. 岩石力学与工程学报, 2011, 30(增2):3574-3583. WU Ya-jun,ZOU Dao-min,TANG Jun-wu,et al. Study of ground treatment of dredger fill in-situ test with stalk cushion using vacuum preloading method[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(supple.2):3574-3583.
[2] 武亚军, 杨建波, 张孟喜. 真空加载方式对吹填流泥加固效果及土颗粒移动的影响研究[J]. 岩土力学, 2013, 34(8):2129-2135. WU Ya-jun, YANG Jian-bo, ZHANG Meng-xi. Study of impact of vacuum loading mode on dredger fill flow mud consolidation effect and soil particles moving[J]. Rock and Soil Mechanics, 2013, 34(8):2129-2135.
[3] 苑晓青, 王清, 孙铁, 等. 分级真空预压法加固吹填土过程中孔隙分布特征[J]. 吉林大学学报:地球科学版, 2012, 42(1):169-176. YUAN Xiao-qing, WANG Qing, SUN Tie, et al. Pore distribution characteristics of Dedger fill during hierarchical vacuum preloading[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(1):169-176.
[4] 周蓉, 张洪弟. 土工织物渗透性能评价及其工程意义[J]. 纺织学报, 2000, 21(3):180-183. ZHOU Rong, ZHANG Hong-di. Assessment and engineering significance of geotextiles permeability[J]. Journal of Textile Research, 2000, 21(3):180-183.
[5] 陈轮, 童朝霞. 拉应变对土工织物-非连续级配土淤堵特性的影响[J]. 水力发电学报, 2003, 32(2):97-102. CHEN Lun, TONG Zhao-xia. Effects of tensile strain of the geotextile on clogging behavior in geotextile-gap graded soil filtering systems[J]. Journal of Hydroelectric Engineering, 2003, 32(2):97-102.
[6] 王军, 蔡袁强, 符洪涛, 等. 新型防淤堵真空预压法室内与现场试验研究[J]. 岩石力学与工程学报, 2014, 33(6):1257-1268. WANG Jun, CAI Yuan-qiang, FU Hong-tao, et al. Indoor and field test on vacuum preloding with new anti-clogging measures[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(6):1257-1268.
[7] 章定文, 刘松玉, 顾沉颖, 等. 土体气压劈裂的室内模型试验[J]. 岩土工程学报, 2009, 31(12):1925-1929. ZHANG Ding-wen, LIU Song-yu, GU Chen-ying, et al. Model tests on pneumatic fracturing in soils[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12):1925-1929.
[8] 韩文君, 刘松玉, 章定文. 土体气压劈裂裂隙扩展特性及影响因素分析[J]. 土木工程学报, 2011, 44(9):87-93. HAN Wen-jun, LIU Song-yu, ZHANG Ding-wen. Characteristics and influencing factors analysis of propagation of pneumatic fracturing in soils[J]. China Civil Engineering Journal, 2011, 44(9):87-93.
[9] 沈宇鹏, 冯瑞玲, 余江, 等. 增压式真空预压处理软基的加固机理[J]. 吉林大学学报:地球科学版, 2012, 42(3):792-797. SHEN Yu-peng, FENG Rui-ling, YU Jiang, et al. Reinforcement of vacuum preloading with air pressure boosted for soft ground treatment[J]. Journal of Jilin University:Earth Science Edition, 2012, 42(3):792-797.
[10] 杨春英, 徐薇, 白晨光. 施工废弃泥浆絮凝脱水试验及机理分析[J]. 环境科技, 2013, 26(5):15-17. YANG Chun-ying, XU Wei, BAI Chen-guang. The mud flocculation dehydration test and mechanism analysis[J]. Environmental Science and Technology, 2013, 26(5):15-17.
[11] BESRA L, SENGUPTA D K. Influence of polymer adsorption and conformation on flocculation and dewatering of kaolin suspension[J]. Separation and Purification Technology, 2004, 37(3):231-246.
[12] NASSER M S, JAMES A E. The effect ofpolyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions[J]. Separation and Purification Technology, 2006, 52(2):241-252.
[13] MAREK S Z, ROGER S C S, GAYLE E M. Kaolinite flocculation structure[J]. Journal of Colloid and Interface Science, 2008, 328(1):73-80.
[14] 李冲, 吕志刚, 陈洪龄, 等. 阴离子型聚丙烯酰胺在废弃桩基泥浆处理中的应用[J]. 环境科技, 2012, 25(1):33-37. LI Chong, LV Zhi-gang, CHEN Hong-ling, et al. Application of anionic polyacrylamide in treating waste slurry from pile foundation engineering[J]. Environmental Science and Technology, 2012, 25(1):33-37.
[15] 赵森, 曾芳金, 王军, 等. 絮凝-真空预压加固吹填淤泥试验研究[J]. 岩石力学与工程学报, 2016, 35(6):1291-1296. ZHAO Sen,ZENG Fang-jin,WANG Jun, et al. Experimental study of flocculation combined with vacuum preloading to reinforce silt foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(6):1291-1296.
[16] 武亚军, 陆逸天, 牛坤, 等. 药剂真空预压法处理工程废浆试验[J]. 岩土工程学报, 2016, 38(8):1365-1373. WU Ya-jun, LU Yi-tian, NIU Kun, et al. Experimental study on solid-liquid separation of construction waste slurry by additive agent-combined vacuum preloading[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(8):1365-1373.
[17] 武亚军, 陆逸天, 骆嘉成, 等. 药剂真空预压法在工程废浆处理中的防淤堵作用[J]. 岩土工程学报, 2017, 39(3):525-532. WU Ya-jun, LU Yi-tian, LUO Jia-cheng, et al. Anti-clogging function of vacuum preloading with flocculant in solid-liquid separation of construction vaste slurry[J]. Chinese Journal of Geotechnical Engineering. 2017, 39(3):525-532.
[18] ZALL J, REHBUN M. Skeleton builders for conditioning oily sludge[J]. Journal-Water Pollution Control Federation, 1987, 59(7):699-706.
[19] BORÁ J, HOUDKOVÁ L, ELSÄβER T. Processing of sewage sludge:dependence of sludge dewatering efficiency on amount of flocculant[J]. Resources Conservation and Recycling, 2010, 54(5):278-282.
[20] BENÍTEZ J, RODRÍGUEZ A, SUÁREZ A. Optimization technique for sewage sludge conditioning with polymer and skeleton builders[J]. Water Research, 1994, 28(10):2067-2073.
[21] THAPA K B, QI Y, HOADLEY A F A. Interaction of polyelectrolyte with digested sewage sludge and lignite in sludge dewatering[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2009, 334(1-3):66-73.
[22] LI Y L, LIU J W, CHEN J Y, et al. Reuse of dewatered sewage sludge conditioned with skeleton builders as landfill cover material[J]. International Journal of Environmental Science and Technology, 2014, 11(1):233-240.
[23] YANG J, ZHANG S, SHI Y, et al. Direct reuse of two deep-dewatered sludge cakes without a solidifying agent as landfill cover geotechnical properties and heavy metal leaching characteristics[J]. RSC Advances, 2017, 7(7):3823-3830.
[24] ZHAO Y Q. Enhancement of alum sludge dewatering capacity by using gypsum as skeleton builder[J]. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2002, 211(2/3):205-212.
[25] LEE D Y, JING S R, LIN Y F. Using seafood waste as sludge conditioners[J]. Water Science and Technology A Journal of the International Association on Water Pollution Research, 2001, 44(10):301-307.
[26] CHEN C Y, ZHANG P Y,ZENG G M, et al. Sewage sludge conditioning with coal fly ash modified by sulfuric acid[J]. Chemical Engineering Journal, 2010, 158(3):616-622.
[27] 时亚飞, 杨家宽, 李亚林, 等. 基于骨架构建的污泥脱水/固化研究进展[J]. 环境科学与技术, 2011, 34(11):70-75. SHI Ya-fei, YANG Jia-kuan, LI Ya-lin, et al. Review on sludge dewatering and solidification based on skeleton builders[J]. Environmental Science and Technology, 2011, 34(11):70-75.
[28] 余志荣, 郁雨苍, 高廷耀, 等. 石灰在污泥调治中的应用及作用机理研究[J]. 中国给水排水, 1989, 5(6):7-11. YU Zhi-rong, YU Yu-cang, GAO Ting-yao, et al. The application and mechanism of lime in sludge modulation conditioning[J]. China Water and Wastewater, 1989, 5(6):7-11.
[29] 黄英豪, 朱伟, 张春雷, 等. 固化淤泥重塑土力学性质及其强度来源[J]. 岩土力学, 2009, 30(5):1352-1356. HUANG Ying-hao, ZHU Wei, ZHANG Chun-lei, et al. Mechanical characteristics and strength source of remolded solidified dredged material[J]. Rock and Soil Mechanics, 2009, 30(5):1352-1356.
[30] ZHU W, ZHANG C L, CHIU C F. Soil-water transfer mechanism for solidified dredged materials[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(5):588-598.
[31] HUANG Y H, ZHU W, QIAN X D, et al. Change of mechanical behavior between solidified and remolded solidified dredged materials[J]. Engineering Geology, 2011, 119(34):112-119.
[32] 鲍树峰, 董志良, 莫海鸿, 等. 高黏粒含量新吹填淤泥加固新技术室内研发[J]. 岩土力学, 2015, 36(1):61-67. BAO Shu-feng, DONG Zhi-liang, MO Hai-hong, et al. Laboratory tests on new reinforcement technology of newly hydraulic reclamation mud with high clay content[J]. Rock and Soil Mechanics, 2015, 36(1):61-67.
[33] 刘禹杨, 吴燕, 胡保安, 等. 疏浚底泥掺外加剂真空预压脱水技术研究[J]. 水利水运工程学报, 2013(3):78-82. LIU Yu-yang, WU Yan, HU Bao-an, et al. Research on dehydration technology of dredged sludge by admixture and vacuum preloading[J]. Hydro-Science and Engineering, 2013(3):78-82.
[34] 王建勋, 王保田. 真空预压联合石灰稳定法改良淤泥土试验研究[J]. 岩土力学, 2008, 29(增刊):575-579. WANG Jian-xun, WANG Bao-tian. Testal study of vacuum preloading of lime stabilized sludge[J]. Rock and Soil Mechanics, 2008, 29(supplement):575-579.
[35] 刘忠, 刘含笑, 冯新新, 等. 超细颗粒物聚并模型的比较研究[J]. 燃烧科学与技术, 2012, 18(3):212-216. LIU Zhong, LIU Han-xiao, FENG Xin-xin, et al. Comparative study on the different coalescence models of ultrafine particles[J]. Journal of Combustion Science and Technology, 2012, 18(3):212-216.[STHZ |