浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 864-872    DOI: 10.3785/j.issn.1008-973X.2018.05.006
 土木与交通工程

1. 同济大学 土木工程学院, 上海 200092;
2. 上海同恩土木工程科技咨询有限公司, 上海 200092
Inversion algorithm for the geometric imperfection distribution of existing reticulated structures
WU Jun1, LUO Yong-feng1, WANG Lei2
1. Department of Structural Engineering, Tongji University, Shanghai 200092, China;
2. Tongen Civil Engineering Technology Consulting Co. Shanghai 200092, China
 全文: PDF(3707 KB)   HTML

Abstract:

A Markov Random Field (MRF) model of existing reticulated structures was proposed by leading into the probabilistic graph model in view of the fact that the traditional sampling method can hardly obtain the actual distribution of geometric imperfections of existing structures. The calculation unit of double-node and triple-node clique was proposed. The corresponding geometric state function was deducted based on the assumption of local Markov property. The inversion equation for the geometric imperfection distribution of existing reticulated structures were proposed by introducing the joint probability distribution function of MRF. Then, in order to determine the geometric imperfection distribution, the inversion iteration equation was deducted using iterative maximum likelihood method. An experimental model of K6 single-layer reticulated shell was designed to verify the inversion algorithm by calculating and comparing the mode of geometric imperfection distribution. When the ratio of the measured points is greater than 16.5%, the geometric imperfection mode from the inversion calculation has good similarity with the actual mode. The results can even identify the abnormal values of the measured points.

 CLC: TU393.3

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章

#### 引用本文:

WU Jun, LUO Yong-feng, WANG Lei. Inversion algorithm for the geometric imperfection distribution of existing reticulated structures. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 864-872.

#### 链接本文:

 [1] BORRI C, SPINELLI P. Buckling and post-buckling behaviour of single layer reticulated shells affected by random imperfections[J]. Computers & Structures, 1988, 30(4):937-943. [2] 罗永峰.建筑钢结构稳定理论与应用[M].北京:人民交通出版社,2010:48-54. [3] GIONCU V. Buckling of reticulated shells:State-of-the-art[J]. International Journal of Space Structures, 1995, 10(1):1-46. [4] YAMADA S, TAKEUCHI A, TADA Y, et al. Imperfection-sensitive overall buckling of single-layer lattice domes[J]. Journal of Engineering Mechanics, 2001, 127(4):382-386. [5] ELISHAKOFF I. Uncertain buckling:its past, present and future[J]. International Journal of Solids & Structures, 2000, 37(46):6869-6889. [6] FAN F, CAO Z, SHEN S. Elasto-plastic stability of single-layer reticulated shells[J]. Thin-Walled Structures, 2010, 48(10):827-836. [7] FAN F, YAN J, CAO Z. Stability of reticulated shells considering member buckling[J]. Journal of Constructional Steel Research, 2012, 77(10):32-42. [8] FAN F, YAN J, CAO Z. Elasto-plastic stability of single-layer reticulated domes with initial curvature of members[J]. Thin-Walled Structures, 2012, 48(10/11):827-836. [9] BRUNO L, SASSONE M, VENUTI F. Effects of the Equivalent geometric nodal Imperfections on the stability of single layer grid shells[J]. Engineering Structures, 2016, 112:184-199. [10] CHEN G, ZHANG H, RASMUSSEN K J R, et al. Modeling geometric imperfections for reticulated shell structures using random field theory[J]. Engineering Structures, 2016, 126:481-489. [11] PEEK R. Worst shapes of imperfections for space trusses with multiple global and local buckling modes[J]. International Journal of Solids & Structures, 1993, 30(16):2243-2260. [12] CHEN X, SHEN S Z. Complete load-deflection response and initial imperfection analysis of single-layer lattice dome[J]. International Journal of Space Structures, 1993, 8(4):271-278. [13] 蔡健, 贺盛, 姜正荣,等. 单层网壳结构稳定性分析方法研究[J]. 工程力学, 2015, 32(7):103-110. CAI Jian, HE Sheng, JIANG Zheng-Rong, et al. Investigation on stability analysis method of single layer latticed shells[J]. Engineering Mechanics, 2015, 32(7):103-110. [14] 刘慧娟,罗永峰,杨绿峰,等.单层网壳结构稳定性分析的随机缺陷模态迭加法[J].同济大学学报:自然科学版,2012,40(9):1294-1299. LIU Hui-juan, LUO Yong-feng, YANG Lv-feng, et al. Stochastic imperfection mode superposition method for stability analysis of single-layer lattice domes[J]. Journal of Tongji University:Natural Science, 2012, 40(9):1294-1299. [15] KIYOHIRO I, KAZUO M. Statistics of normally distributed initial imperfections[J]. International Journal of Solids & Structures, 1993, 30(18):2445-2467. [16] 罗永峰.国家标准《高耸与复杂钢结构检测与鉴定技术标准》编制简介[J].钢结构,2014,29(4):44-49. LUO Yong-feng. Brief introduction of composition of technical standard for inspection and appraisal of high-rising and complex steel structures[J]. Steel Construction, 2014, 29(4):44-49. [17] 罗立胜,罗永峰,郭小农.考虑节点几何位置偏差的既有网壳结构稳定计算方法[J].湖南大学学报:自科版,2013,40(3):26-30. LUO Li-Sheng, LUO Yong-Feng, GUO Xiao-Nong. Overall stability of existing reticulated shells considering the effect of geometric position deviation of joints[J]. Journal of Hunan University:Natural Sciences, 2013, 40(3):26-30. [18] KOLLER D, Friedman N. Probabilistic graphical models:principles and techniques[M]. Massachusetts:MIT press, 2009:3-5. [19] GEMAN S, GEMAN D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images[J]. IEEE Transactions on Pattern Analysis and Machine intelligence, 1984(6):721-741. [20] FRANK O, STRAUSS D, Markow graphs. Journal of the American Statistical Association, 1986, 81(395):832-842. [21] JGJ 7-2010. 空间网格结构技术规程[S].北京:中国建筑工业出版社, 2011. JGJ 7-2010. Technical specification for space frame structures[S]. Beijing:China Architecture Industry Press, 2011. [22] BOX G E P, MULLER M E. A note on the generation of random normal deviates[J]. Annals of Mathematical Statistics, 1958, 29(2):610-611.
 [1] 周泽生, 邓华, 刘承斌. 岩棉夹芯屋面板对屋盖结构风振效应的影响[J]. 浙江大学学报(工学版), 2017, 51(11): 2101-2111. [2] 朱钊辰, 相阳, 罗永峰. 空间结构静力稳定分析与评定的特征刚度法[J]. 浙江大学学报(工学版), 2017, 51(11): 2112-2120.