Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (3): 473-478    DOI: 10.3785/j.issn.1008-973X.2018.03.008
机械工程与力学     
抗磁性物质的磁悬浮仿真及密度测量
夏能, 颉俊, 张承谦, 赵朋, 傅建中
浙江大学 机械工程学院 浙江省三维打印工艺与装备重点实验室, 浙江 杭州 310027
Magnetic levitation simulation and density measurement for diamagnetic materials
XIA Neng, XIE Jun, ZHANG Cheng-qian, ZHAO Peng, FU Jian-zhong
College of Mechanical Engineering, Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1682 KB)   HTML
摘要:

利用COMSOL、Fluent和EDEM软件,仿真预测出不同磁悬浮装置下样品密度与悬浮高度之间的函数关系.在理论分析磁悬浮检测装置与原理的基础上,采用COMSOL软件模拟装置的磁场分布,通过拟合得到中心线上磁场强度表达式,并利用Fluent与EDEM软件耦合预测样品的悬浮高度.通过不同密度、不同磁铁间距的磁悬浮分组实验,验证数值仿真结果的正确性.实验结果表明,当磁铁间距为45 mm时,样品密度与悬浮高度呈线性关系,测量偏差为-0.001 5~0.013 0 g/cm3;当磁铁间距为60 mm时,样品密度与悬浮高度服从多项式函数关系,测量偏差达到-0.006 4~0.013 0 g/cm3.该数值仿真方法使用方便且密度检测精度高.

Abstract:

COMSOL, Fluent and EDEM software were combined to simulate the mathematic relationship between the density and the levitation height of diamagnetic materials under different levitation devices. Based on theoretical analysis of magnetic levitation device and its principle, COMSOL software was adopted to simulate the levitation devices' magnetic field, and the expression of the magnetic flux density on the center line was established by fitting. The materials' levitation height was predicted by the Fluent-EDEM software. Magnetic levitation experiments with various densities materials and different separation distances between two magnets were performed to verify the accuracy of simulation results. The experimental results show that, when the separation distance is 45 mm, there is a linear relationship between density and levitation height, and its density measurement deviation ranges from -0.001 5 g/cm3 to 0.013 0 g/cm3. When the separation distance is 60 mm, the relationship agrees with polynomial function, and the measurement deviation is from -0.006 4 g/cm3 to 0.013 0 g/cm3. The numerical simulation method is very convenient and has high accuracy in density measurement.

收稿日期: 2017-04-18 出版日期: 2018-09-11
CLC:  TQ320  
基金资助:

国家自然科学基金面上资助项目(51475420);国家自然科学基金重点资助项目(51635006);中央高校基本科研业务费专项资金资助项目(2017QNA4003).

通讯作者: 赵朋,男,副教授,博士.orcid.org/0000-0002-3815-1248.     E-mail: pengzhao@zju.edu.cn
作者简介: 夏能(1996-),男,硕士生,从事聚合物成型及微观形态表征与调控研究.orcid.org/0000-0001-6189-3138.E-mail:21625193@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

夏能, 颉俊, 张承谦, 赵朋, 傅建中. 抗磁性物质的磁悬浮仿真及密度测量[J]. 浙江大学学报(工学版), 2018, 52(3): 473-478.

XIA Neng, XIE Jun, ZHANG Cheng-qian, ZHAO Peng, FU Jian-zhong. Magnetic levitation simulation and density measurement for diamagnetic materials. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(3): 473-478.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.03.008        http://www.zjujournals.com/eng/CN/Y2018/V52/I3/473

[1] 赵杨, 林莉, 李继承, 等. 基于超声波声压反射系数相位谱测定热障涂层密度的方法研究[J]. 稀有金属材料与工程, 2010, 39(增1):255-258. ZHAO Yang, LIN Li, LI Ji-cheng, et al. Investigation on the principle for measuring inhomogeneous coating density by ultrasonic sound pressure reflection coefficient phase spectrum[J].Rare Metal Materials And Engineering, 2010, 39(Suppl.1):255-258.
[2] DAVIDSON S, PERKIN M. An investigation of density determination methods for porous materials, small samples and particulates[J]. Measurement, 2013, 46(5):1766-1770.
[3] GHORBANI M, MOHAMMADI A H. Effects of temperature, pressure and fluid composition on hydrocarbon gas-oil interfacial tension (IFT):An experimental study using ADSA image analysis of pendant drop test method[J]. Journal of Molecular Liquids, 2017, 227:318-323.
[4] MIRICA K A, SHEVKOPLYAS S S, PHILLIPS S T, et al. Measuring densities of solids and liquids using magnetic levitation:fundamentals[J]. Journal of the American Chemical Society, 2009, 131(29):10049-10058.
[5] ATKINSON M B J, BWAMBOK D K, CHEN J, et al. Using magnetic levitation to separate mixtures of crystal polymorphs[J]. Angewandte Chemie, 2013, 52(39):10208-10211.
[6] MIRICA K A, PHILLIPS S T, MACE C R, et al. Magnetic levitation in the analysis of foods and water[J]. Journal of Agricultural and Food Chemistry, 2010, 58(11):6565-6569.
[7] HENNEK J W, NEMIROSKI A, SUBRAMANIAM A B, et al. Using magnetic levitation for non-destructive quality control of plastic parts[J]. Advanced Materials, 2015, 27(9):1587-1592.
[8] LOCKETT M R, MIRICA K A, MACE C R, et al. Analyzing forensic evidence based on density with magnetic levitation[J]. Journal of Forensic Sciences, 2013, 58(1):40-45.
[9] SHAPIRO N D, SOH S, MIRICA K A, et al. Magnetic levitation as a platform for competitive protein-ligand binding assays[J]. Analytical Chemistry, 2012, 84(14):6166-6172.
[10] MIRICA K A, PHILLIPS S T, SHEVKOPLYAS S S, et al. Using magnetic levitation to distinguish atomic-level differences in chemical composition of polymers, and to monitor chemical reactions on solid supports[J]. Journal of the American Chemical Society, 2008, 130(52):17678-17680.
[11] SUBRAMANIAM A B, YANG D, YU H D, et al. Noncontact orientation of objects in three-dimensional space using magnetic levitation[J]. Proceeding of the National Academy of Sciences of the United States of America, 2014, 111(36):12980-12985.
[12] NEMIROSKI A, SOH S, KWOK S W, et al. Tilted magnetic levitation enables measurement of the complete range of densities of materials with low magnetic permeability[J]. Journal of the American Chemical Society, 2016, 138(4):1252-1257.
[13] 赵朋, 颉俊, 傅建中, 等. 塑料光学透镜的磁悬浮检测[J]. 光学精密工程,2016,24(4):756-763. ZHAO Peng, XIE Jun, FU Jian-zhong, et al. Magnetic levitation detection for plastic optical lenses[J]. Optics and Precision Engineering, 2016, 24(4):756-763.
[14] XIE J, ZHAO P, ZHANG C Q, et al. Measuring densities of polymers by magneto-archimedes levitation[J]. Polymer Testing, 2016, 56:308-313.
[15] 徐显金, 吴龙辉, 杨小俊, 等. 高压直流巡检机器人的磁力驱动方法[J]. 浙江大学学报:工学版, 2016, 50(10):1937-1945. XU Xian-jin, WU Long-hui, YANG Xiao-jun, et al. Magnetic driving method of inspection robot for HVDC transmission lines[J]. Journal of Zhejiang University:Engineering Science,2016,50(10):1937-1945.
[16] 杨公波, 李郁, 陈定方. 基于EDEM仿真的斗轮堆取料机取料机理研究[J]. 武汉理工大学学报:交通科学与工程版, 2014, 38(3):680-683. YANG Gong-bo, LI Yu, CHEN Ding-fang. Research of reclaiming mechanism of the bucket wheel stacker-reclaimer based on EDEM simulation[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering, 2014, 38(3):680-683.
[17] 赵飞, 杨帅, 吴俊, 等. 基于Fluent的压力能交换器端面液膜支撑机理分析[J]. 浙江大学学报:工学版, 2014, 48(8):1528-1533. ZHAO Fei, YANG Shuai, WU Jun, et al. Analysis on support mechanism of the axial film in Rotary Pressure Exchanger based on Fluent[J]. Journal of Zhejiang University:Engineering Science, 2014, 48(8):1528-1533.

[1] 张承谦, 赵朋, 颉俊, 夏能, 傅建中. 抗磁性高密度物质的磁悬浮密度测量方法[J]. 浙江大学学报(工学版), 2018, 52(4): 613-618.