Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (9): 1870-1880    DOI: 10.3785/j.issn.1008-973X.2017.09.022
航空航天技术     
周期激励下NACA 0012翼型单自由度失速颤振研究
阮胤, 邱展, 王福新
上海交通大学 航空航天学院, 上海 200240
One-degree-of-freedom stall flutter of NACA 0012 airfoil with cyclic pitch input
RUAN Yin, QIU Zhan, WANG Fu-xin
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(3544 KB)   HTML
摘要:

为了深入理解以周期变距为激励的失速颤振特性,通过弹性机构输入周期变化角度,进而控制NACA 0012翼型攻角变化的实验装置,探究弹性约束下翼型攻角的变化规律以及有/无弹性约束时气动力对翼型做功的差异.实验结果表明:攻角的变化规律在不同驱动频率和扭转刚度下表现出4种特殊形态;翼型攻角的变化主频与驱动频率一致,并出现攻角的两周期振动,此时自然频率与驱动频率之比接近π/2.进一步分析气动力对翼型的能量传递,发现周期变距激励的失速颤振与无激励输入颤振有显著差异,分析表明气动力即使在一个周期内做负功,仍可能改变弹性结构的能量传递而使振动幅度增加.

Abstract:

The resultant behavior of airfoil incidence and the differences of work done by aerodynamic forces under/without torsional system are investigated, in order to better understand the characteristics of stall flutter with cyclic pitch input. The incidence of NACA 0012 airfoil was controlled by cyclic pitch input through a torsional elastic system. As results, there are four kinds of special forms of attack angle variation regularities under different driving frequencies and torsional rigidity. The main frequency complies with the driving frequency, while a period-2 oscillation is also observed, where the ratio of driving and natural frequency is approximately π/2. Further analysis considering the energy transfer of aerodynamic force on the airfoil shows that the mechanism of energy transfer of stall flutter with cyclic pitch differs from that inspired by perturbation, which means the elastic structure will be changed and the flutter amplitude can still be increased, even if negative work is done by aerodynamic forces.

收稿日期: 2016-08-05 出版日期: 2017-08-25
CLC:  V211.47  
基金资助:

国家自然科学基金资助项目(11372178).

通讯作者: 王福新,男,研究员.orcid.org/0000-0002-7946-6473.     E-mail: fuxinwang@sjtu.edu.cn
作者简介: 阮胤(1991-),男,硕士生,从事非线性气动弹性响应研究.orcid.org/0000-0003-3911-282X.E-mail:yin.ruan@tum.de
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

阮胤, 邱展, 王福新. 周期激励下NACA 0012翼型单自由度失速颤振研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1870-1880.

RUAN Yin, QIU Zhan, WANG Fu-xin. One-degree-of-freedom stall flutter of NACA 0012 airfoil with cyclic pitch input. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1870-1880.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.09.022        http://www.zjujournals.com/eng/CN/Y2017/V51/I9/1870

[1] CORKE T C, THOMAS F O. Dynamic stall in pitching airfoils:aerodynamic damping and compressibility effects[J]. Annual Review of Fluid Mechanics, 2015,47(1):479-505.
[2] DIMITRIADIS G, LI J. Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel[J]. AIAA Journal, 2009, 47(11):2577-2596.
[3] SARKAR S, BIJL H, Nonlinear aeroelastic behavior of an oscillating airfoil during stall-induced vibration[J]. Journal of Fluids and Structures, 2008, 24(6):757-777.
[4] FUNG Y C. An introduction to the theory ofaeroelasticity[M]. Chicago:Courier Corporation, 2012:234-254.
[5] OATES G C. Aircraft propulsion systems technology and design[M]. Ohio:AIAA, 1989.
[6] ARCIDIACONO P J. Prediction of rotor instability of at high forward speeds. Volume I. Steady flight differential equations of motion for a flexible helicopter blade with chordwise mass unbalence[R]. Virginia:U.S. Army Aviation Materiel Laboratiories, 1969.
[7] BOWLES P O, CORKE T C, COLEMAN D G, et al. Improved understanding of aerodynamic damping through the Hilbert transform[J]. AIAA Journal, 2014, 52(11):2384-2394.
[8] BHAT S S, GOVARDHAN R N. Stall flutter of NACA 0012 airfoil at low Reynolds numbers[J]. Journal of Fluids and Structures, 2013, 41:166-174.
[9] O'NEILL T O, STRGANAC T. Aeroelastic response of a rigid wing supported by nonlinear spring[J]. Journal of Aircraft, 1998, 35(4):616-622.
[10] AMANDOLESE X, MICHELIN S, CHOQUEL M. Low speed flutter and limit cycle oscillations of a two-degree-of-freedom flat plate in a wind tunnel[J]. Journal of Fluids and Structures, 2013,43:244-255.
[11] SHAO S, ZHU Q, ZHANG C, et al. Airfoil aeroelastic flutter analysis based on modified leishman-beddoes model at low mach number[J]. Chinese Journal of Aeronautics, 2011, 5(24):550-557.
[12] PRICE S, KELERIS J. Non-linear dynamics of an air foil forced to oscillate in dynamic stall[J]. Journal of sound and Vibration, 1996, 194(2):265-283.
[13] FRAGISKATOS G. Nonlinear response and instabilities of a two-degree-of-freedom airfoil oscillating indynamic stall, in department of mechanical engineering[D]. Montreal Canada:McGill University,1999.
[14] TANG D M, DOWELL E H. Flutter and stall response of a helicopter blade with structural nonlinearity[J]. Journal of Aircraft, 1992. 29(5):953-960.
[15] LAXMAN V, VENKATESAN C. Chaotic response of an airfoil due to aeroelastic coupling and dynamic stall[J]. AIAA Journal, 2007, 45(1):271-280.
[16] MCCROSKEY W J. Unsteady airfoils.[J]. Annual review of fluid Mechanics, 1982. 14(1):285-311.
[17] PARKER T S, CHUA L. Practical numerical algorithms for chaotic systems[M]. New York:Springer Science and Business Media, 2012:47-54.
[18] HAM N, YOUNG M. Limit cycle torsional motion of helicopter blades due to stall[J]. Journal of Sound and Vibration, 1966, 4(3):431-444.
[19] MCALISTER K W, CARR L W, MCCROSKEY W J. Dynamic stall experiments on the NACA 0012 airfoil. (1978-01-01). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19780009057.pdf.
[20] LEE T, GERONTAKOS P. Investigation of flow over an oscillating airfoil[J]. Journal of Fluid Mechanics, 2004, 512:313.
[21] SARKAR S, VENKATRAMAN K. Period-doubling phenomenon observed in the dynamic stall vortex patterns[J]. AIAA Journal, 2007, 45(7):1786-1791.

No related articles found!