Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (9): 1844-1850    DOI: 10.3785/j.issn.1008-973X.2017.09.019
电气工程     
多风扇冷却模块导风罩深度结构研究
石海民1, 俞小莉1, 黄钰期1, 刘震涛1, 李思文2, 陆国栋2
1. 浙江大学 动力机械及车辆工程研究所, 浙江 杭州 310027;
2. 浙江银轮机械股份有限公司, 浙江 台州 317200
Shroud depth structure of multi-fans cooling package
SHI Hai-min1, YU Xiao-li1, HUANG Yu-qi1, LIU Zhen-tao1, LI Si-wen2, LU Guo-dong2
1. Power Machinery and Vehicle Engineering Institute, Zhejiang University, Hangzhou 310027, China;
2. Zhejiang Yinlun Machinery Co. Ltd, Taizhou 317200, China
 全文: PDF(4597 KB)   HTML
摘要:

为揭示导风罩结构参数对多风扇冷却模块(MFCP)性能的影响,采用多重参考坐标系模型对风扇建模、采用多孔介质模型和热交换器模型对散热器建模,完成MFCP建模;搭建试验台架验证模型精度;利用该模型开展仿真计算.仿真结果表明:导风罩深度越大,模块气动和散热性能越好,性能可提升空间逐渐变小.考虑安装空间、制造成本等限制因素,定义最优导风罩深度(MOSD),利用仿真计算进一步探寻MOSD的影响因素.结果表明:模块中的风扇数量对MOSD的影响较小,对多风扇冷却模块导风罩深度的研究可简化为对单风扇冷却模块的研究;面积比越大,MOSD越大;长宽比参数(本研究取2.62)只有大到一定程度,才对MOSD有显著影响;散热器阻力特性和风扇转速对MOSD几乎没有影响.

Abstract:

The electrical fan module was established and numerically simulated by multiple reference frame method in order to study the performance of multi-fans cooling package (MFCP) influenced by shroud structural parameters. The radiator was simplified as porous medium, and the heat transfer characters was calculated by heat exchanger model. Then, the MFCP model was established. A test bench was set up to validate the simulation. According to the simulation, if the shroud was deeper, the aerodynamic and heat transfer performance of module would be developed, but the development would be minimized gradually. A parameter named most optimized shroud depth (MOSD) was defined according to the size and cost to evaluate the effect. To find out the MOSD further, it was found that there was little influence induced by the numbers of the fans, thus the study could be focused on the single fan module. The larger the area ratio is, the larger the MOSD is. The ratio of length and height do not influence the MOSD until it increases to a quite large value, which is 2.62 in our study. The effect by the radiator resistance and fan speeds are barely noticed.

收稿日期: 2016-07-06 出版日期: 2017-08-25
CLC:  TK424.3  
基金资助:

浙江省重大科技专项重点工业项目(2013C01002);中央高校基本科研业务费专项资金资助项目(2016QNA4011).

通讯作者: 黄钰期,女,副教授.orcid.org/0000-0003-3152-5021.     E-mail: huangyuqi@zju.edu.cn
作者简介: 石海民(1984-),男,博士生,从事车辆热管理技术研究.orcid.org/0000-0002-2072-9080.E-mail:11227055@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

石海民, 俞小莉, 黄钰期, 刘震涛, 李思文, 陆国栋. 多风扇冷却模块导风罩深度结构研究[J]. 浙江大学学报(工学版), 2017, 51(9): 1844-1850.

SHI Hai-min, YU Xiao-li, HUANG Yu-qi, LIU Zhen-tao, LI Si-wen, LU Guo-dong. Shroud depth structure of multi-fans cooling package. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1844-1850.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.09.019        http://www.zjujournals.com/eng/CN/Y2017/V51/I9/1844

[1] CELIK E. Truck airflow management influence on cooling module performance-experimental and numerical study[C]//2000 SAE World Congress. Detroit:SAE 2000:1-6.
[2] TAYLOR D O, CHU A C. Wind tunnel investigation of the effects of installation parameters on truck cooling system performance[C]//1976 SAE World Congress. Deroit:SAE, 1976:2070-2682.
[3] HALLQVIST T. The cooling airflow of heavy trucks a parametric study[C]//2008 SAE World Congress.Detroit:SAE, 2008:119-133.
[4] 沈凯,徐锦华,朱黎明,等.发动机冷却模块安装参数对气动性能的影响[J]. 内燃机工程,2013, 34(1):27-32. SHEN Kai, XU Jin-hua, ZHU Li-ming, et al. Influence of installation of cooling components on aerodynamic characteristics[J]. Chinese Internal Combustion Engine Engineering, 2013, 34(1):27-32.
[5] SRINIVASA V K, RENJITH S, SHOME B. Design of experiments enabled CFD approach for optimizing cooling fan performance[C]//2014 SAE World Congress. Detroit:SAE, 2014:2014-01-0658.
[6] 田海勇,马文肖,孙会来,等. 工程车辆发动机冷却风扇的设计与优化[J]. 矿山机械,2014, 42(6):40-45. TIAN Hai-yong, MA Wen-xiao, SUN Hui-lai, et al. Design and optimization of cooling fan for the engine of construction vehicle[J]. Mining and Processing Equipment,2014, 42(6):40-45.
[7] 刘佳鑫. 工程机械散热模块传热性能研究[D]. 长春:吉林大学, 2013:28. LIU Jia-xin. Research on heat transfer performance of heat-dissipation module for construction machinery[D]. Changchun:Jilin University, 2013:28.
[8] AP N S, GUERRERO P, JOUANNY P. Influence of front end vehicle, fan and shroud on the heat performance of A/C condenser and cooling radiator[C]//2002 SAE World Congress. Detroit:SAE, 2002:2002-01-1206.
[9] 贾青,杨志刚. 汽车前端部件结构对冷却性能的影响[J].同济大学学报:自然科学版, 2014, 42(8):1221-1226. JIA Qing, YANG Zhi-gang. Influence of front end structure on vehicle cooling performance[J]. Journal of Tongji University:Natural Science, 2014,42(8):1221-1226.
[10] MANNA S,KUSHWAH Y S.Optimization of a vehicle under hood airflow using 3D CFD analysis[C]//2015 SAE World Congress.Detroit:SAE,2015:2015-01-0349.
[11] STEPHENS T,CROSS T.Fan and heat exchanger flow interactions[C]//2005 SAE World Congress.Toronto:SAE,2005:2005-01-2004.
[12] 李永乐,陈宁,蔡宪棠,等.桥塔遮风效应对风-车-桥耦合震动的影响[J].西南交通大学学报,2010,45(6):875-881.LI Yong-le,CHEN Ning,CAI Xian-tang,et al.Wake impact of bridge tower on coupling vibration of wind-vehicle-bridge system[J].[WTHZ]Journal of Southwest University[WTBZ],2010,45(6):875-881.
[13] GULLBERG P,LOFDAHL L,ADELMAN S,et al.An investigation and correction method of stationary fan CFD MRF simulations[C]//2009 SAE World Congress.Detroit:SAE,2009:2009-01-3067.
[14] GULLBERG P,LOFDAHL L,NILSSON P,et al.Continued study of the error and consistency of fan CFD MRF models[C]//2010 SAE World Congress.Detroit:SAE,2010:2010-01-0553.
[15] GULLBERG P,LOFDAHL L,NILSSON P.Cooling airflow system modeling in CFD using assumption of stationary flow[C]//2011 SAE World Congress.Detroit:SAE,2011:2011-01-2182.
[16] 吕峰.商用车冷却模块匹配设计方法研究[D].杭州:浙江大学,2011:84-86.LV Feng.The investigation on match and design of commercial vehicle cooling module[D].Hangzhou:Zhejiang University,2011:84-86.
[17] 全国内燃机标准化技术委员会.内燃机水散热器技术条件:JB/T 8577-2015[S].北京,机械工业出版社,2016.

No related articles found!