Please wait a minute...
浙江大学学报(工学版)  2017, Vol. 51 Issue (9): 1704-1711    DOI: 10.3785/j.issn.1008-973X.2017.09.004
土木与交通工程     
混凝土防渗墙变形与应力分布特性
余翔1, 孔宪京1,2, 邹德高1,2
1. 大连理工大学 水利工程学院, 辽宁 大连 116024;
2. 大连理工大学 海岸和近海工程国家重点实验室, 辽宁 大连 116024
Deformation and stress distribution characteristics of concrete cut-off wall
YU Xiang1, KONG Xian-jing1,2, ZOU De-gao1,2
1. School of Hydraulic Engineering, Dalian University of Technology, Dalian 116024, China;
2. The State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China
 全文: PDF(2860 KB)   HTML
摘要:

以建于覆盖层上的土石坝为背景,对80 m深覆盖层上的沥青混凝土心墙坝进行填筑和蓄水三维有限元数值精细模拟,采用非协调元模拟防渗墙单元以更精确地描述其弯曲变形模式.分析不同加载时段防渗墙的变形规律,并讨论墙体应力分布规律及其拉应力产生演化机理.结果表明:满蓄期,防渗墙岸坡附近的弯曲变形较大,是较危险部位,墙体下游侧的岸坡附近处于受拉状态.弯曲引起的墙体下游侧拉应力与下游墙面的夹角基本小于30°,且在下游墙面的投影偏向坝轴向.改善下游侧覆盖层土体特性能有效降低该区域的拉应力.研究成果可为深厚覆盖层中防渗墙的合理设计提供参考.

Abstract:

Three-dimensional finite element analysis were carried out on the background of dams built on overburden, to simulate the layered filling and water impounding process of an asphalt concrete core dam built on an 80 m deep overburden. Nonconforming element was employed to present more precisely the deformation modes of the concrete cut-off wall built in the overburden. The deformation behavior of the cut-off wall was analyzed at different stages. The stress distribution rule and mechanism in cut-off wall were presented. As results, the part near the bank slop of the cut-off wall has large bending at full storage stage, which is relatively dangerous. The downstream side of concrete cut-off wall is in a state of tension. The angle between the tensile stress caused by bending and the downstream surface was less than 30°; the projection for the tensile stress on downstream surface tends to the dam axial direction. The tensile stress can be effectively reduced if the soil on downstream side of the wall is reinforced. The research results can offer reference for reasonably designing a concrete cut-off wall built in overburden.

收稿日期: 2016-06-17 出版日期: 2017-08-25
CLC:  TV641  
基金资助:

国家自然科学基金资助项目(51379028,51279025);新世纪优秀人才支持计划资助项目(NCET-12-0083).

通讯作者: 孔宪京,男,教授.orcid.org/0000-0003-0815-0110.     E-mail: kongxj@dlut.edu.cn
作者简介: 余翔(1988-),男,博士生,从事土石坝工程数值分析研究.orcid.org/0000-0002-7488-3550.E-mail:xiangyu@mail.dlut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

余翔, 孔宪京, 邹德高. 混凝土防渗墙变形与应力分布特性[J]. 浙江大学学报(工学版), 2017, 51(9): 1704-1711.

YU Xiang, KONG Xian-jing, ZOU De-gao. Deformation and stress distribution characteristics of concrete cut-off wall. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2017, 51(9): 1704-1711.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2017.09.004        http://www.zjujournals.com/eng/CN/Y2017/V51/I9/1704

[1] 党林才,方光达.利用覆盖层建坝的实践与发展[G]//中国水力发电工程学会水工及水电站建筑物专业委员会.委员大会论文集.北京:中国水力水电出版社, 2009:1-13.
[2] 中华人民共和国水利部.碾压式土石坝设计规范:SL 274-2001[S].北京:中国水利水电出版社, 2002:6.
[3] 郭诚谦.论混凝土防渗墙的应力特性[J].水力发电, 1995(7):18-22. GUO Cheng-qian. Discussion on stress characteristics of concrete diaphragm wall[J]. Water Power, 1995(7):18-22.
[4] 郦能惠,米占宽,孙大伟.深厚覆盖层上面板堆石坝防渗墙应力变形性状影响因素的研究[J].岩土工程学报, 2007, 29(1):29-31. LI Neng-hui, MI Zhan-kuan, SUN Da-Wei. Study on affecting factors of stress-deformation of dapharagm walls for concrete face rockfill dams built on thick alluvium deposit[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1):29-31.
[5] 杨令强,武甲庆,秦冰.土石坝混凝土防渗墙的非线性分析[J].岩土力学, 2007, 28(增):277-280. YANG Ling-qiang, WU Jia-qing, QIN Bing. The nonlinear analysis of diaphragm wall in earth dam[J]. Rock and Soil Mechanics, 2007, 28(Supp1.):277-280.
[6] 丁艳辉,张其光,张丙印.高心墙堆石坝防渗墙应力变形特性有限元分析[J].水力发电学报, 2013, 32(3):162-167. DING Yan-hui, ZHANG Qi-guang, ZHANG Bing-yin. FEM analysis of stress-deformation characteristics of cut-off walls in high core rockfill dam[J]. Journal of Hydroelectric Engineering, 2013, 32(3):162-167.
[7] 介玉新,周厚德.防渗墙的弯矩计算[J].岩石力学与工程学报, 2009, 28(6):1213-1219. JIE Yu-xin, ZHOU Hou-de. Bending moment calculation of cutoff wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(6):1213-1219.
[8] YU X, KONG X J, ZOU D G, et al. Linear elastic and plastic-damage analyses of a concrete cut-off wall constructed in deep overburden[J]. Computers and Geotechnics, 2015, 69:462-473.
[9] 王刚,张建民,濮家骝.坝基混凝土防渗墙应力位移影响因素分析[J].土木工程学报, 2006, 39(4):73-77. WANG Gang, ZHANG Jian-min, PU Jia-liu. An evaluation of the factors influencing the stress and deformation of concrete diaphragm wall in dams[J]. China Civil Engineering Journal, 2006, 39(4):73-77.
[10] 祁伟强,彭云枫,袁玉琳,等.坝基混凝土防渗墙应力变形三维有限元分析[J].水电能源科学, 2012, 30(8):63-66. QI Wei-qiang, PENG Yun-feng, YUAN Yu-lin, et al. 3D Finite element analysis of stress and deformation of concrete cut-off wall in dam foundation[J]. Water Resources and Power, 2012, 30(8):63-66.
[11] 潘迎,何蕴龙,周小溪,等.河谷地形对深厚覆盖层中防渗墙应力变形影响分析[J].岩土力学, 2013, 34(7):2023-2030. PAN Ying, HE Yun-long, ZHOU Xiao-xi, et al.Analysis of effect of canyon terrain on stress and displacement of cutoff wall in dam foundation with deepoverburden[J]. Rock and Soil Mechanics, 2013, 34(7):2023-2030.
[12] 吕洪旭,陈科文,邓建辉,等.瀑布沟大坝防渗墙应力分布特性及机理探讨[J].人民长江, 2011, 42(10):39-43. LV Hong-xu, CHEN Ke-wen, DENG Jian-hui, et al. Discussion on mechanism and stress distribution features of diaphram walls of Pubugou hydropower station during construction period[J]. Yangtze River, 2011, 42(10):39-43.
[13] 熊堃,何蕴龙,伍小玉,等.长河坝坝基廊道应力变形特性研究[J].岩土工程学报, 2011, 33(11):1767-1774. XIONG Kun, HE Yun-long, WU Xiao-yu, et al. Stress and deformation behavior of foundation gallery of Changheba Hydropower Station[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(11):1767-1774.
[14] 陈晓斌.坎儿其水库土石混合坝沥青砼心墙施工[J].新疆水利,2000,4:28-31.CHEN Xiao-bin.Construction of Kanerqi earth-rockfill dam with asphalt concrete core[J].Xinjiang Water Resources,2000,4:28-31.
[15] 孔宪京,邹德高.旁多水利枢纽大坝筑坝材料试验、有限元静动力分析及抗震安全评价研究[R].大连:大连理工大学工程抗震研究所,2010.
[16] 孔宪京,邹德高.新疆下坂地水利枢纽工程拦河坝静力应力变形分析[R].大连:大连理工大学工程抗震研究所,2004.
[17] 孔宪京,邹德高.长河坝水电站砾石土心墙堆石坝防渗墙受力变形分析理论和方法研究[R].大连:大连理工大学工程抗震研究所,2009.
[18] 中华人民共和国水利部建设与管理司.水利水电工程混凝土防渗墙施工技术规范:SL 174-2014[S].北京:中国水利水电出版社,2014:6.
[19] 郦能惠,米占宽,李国英,等.冶勒水电站超深覆盖层防渗墙应力变形性状的数值分析[J].水利水运工程学报,2004,1:18-23.LI Neng-hui,MI Zhan-kuan,LI Guo-ying,et al.Numerical analysis of stress deformation behavior of concrete diaphragm wall in supper-deep overburdened layer of Yele Hydropower Station[J].Hydro-Science and Engineering,2004,1:18-23.
[20] ZOU D G,XU B,KONG X J,et al.Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J].Computers and Geotechnics,2013,49:111-122.
[21] 张治军,饶锡保,龚壁卫,等.砂砾石与沥青混凝土接触面力学特性试验研究[J].长江科学院院报,2006,23(2):38-41.ZHANG Zhi-jun,RAO Xi-bao,GONG Bi-wei,et al.Experimental study on mechanical behaviors of interface between asphalt-concrete and aggregate[J].Journal of Yangtze River Scientific Research Institute,2006,23(2):38-41.
[22] 傅华,章为民.坝基混凝土防渗墙与泥皮接触面试验研究[C]//第一届中国水利水电岩土力学与工程学术讨论会.昆明:[s.n.],2006:485-487.FU Hua,Zhang Wei-min.Experimental study on the contact behavior between concrete cut-off wall in dam foundation between the slurry[C]//The first Symposium of China WaterPower in Geomechanics and Geotechnical Engineering.Kunming:[s.n.],2006:485-487.
[23] 邹德高,孔宪京,徐斌.GEOtechnical DYnamic Nonlinear Analysis-GEODYNA使用说明[R].大连:大连理工大学工程抗震研究所,2008.
[24] XU B,ZOU D G,LIU H B.Three-dimensional simulation of the construction process of the Zipingpu concrete face rockfill dam based on a generalized plasticity model[J].Computers and Geotechnics,2012,43:143-154.
[25] 朱伯芳.有限单元法原理与应用[M].北京:中国水利水电出版社,知识产权出版社,2009:124-128.
[26] 傅少君,王曼.振冲碎石桩地基有限元分析的复合模型研究[J].岩土力学,2008,29(2):375-380.FU Shao-jun,WANG Man.Study on composite model for vibro-replacement stone column foundation by FEM[J].Rock and Soil Mechanics,2008,29(2):375-380.

[1] 邓璇璇, 马刚, 周伟, 常晓林. 局部约束模式对单颗粒破碎强度的影响[J]. 浙江大学学报(工学版), 2018, 52(7): 1329-1337.
[2] 陈楷, 邹德高, 孔宪京, 刘京茂. 多边形比例边界有限单元非线性化方法及应用[J]. 浙江大学学报(工学版), 2017, 51(10): 1996-2004.