Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
节点半刚性对输电塔风致响应的影响
钱程, 沈国辉, 郭勇, 邢月龙
1. 浙江大学 建筑工程学院,浙江 杭州 310058; 2. 浙江省电力设计院,浙江 杭州 310007
Influence of semi-rigid connections on wind-induced responses of transmission towers
QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China;
2. Electric Power Design Institute of Zhejiang Province, Hangzhou 310007, China
 全文: PDF(2392 KB)   HTML
摘要:

为研究钢构件节点的半刚性特性对输电塔风致响应的影响,提出考虑节点半刚性连接的输电塔有限元建模方法,计算分析半刚性对自振特性和风致响应的影响,给出半刚性节点的量化指标并对一些典型节点进行评价.结果表明:节点转动刚度对输电塔的振型频率、位移和轴力的影响较小,而对弯矩和扭矩的影响较大;当节点转动刚度增大至接近刚接时,主材的弯曲应力占总应力的10%~25%,说明该部分应力对杆件的强度和稳定有较大的影响;给出半刚性节点的量化指标,并对常见的具有不同转动刚度的节点进行评估,发现其均属半刚性连接范畴,因此在对输电塔进行有限元建模时应考虑节点半刚性连接的影响.

Abstract:

A finite element modeling method of tower considering semi-rigid connection was developed to study the influence of semi-rigid property of steel connections on wind-induced responses of transmission towers. The influence of semi-rigid connections on vibration characteristics and wind-induced responses was calculated and analyzed. Quantitative indicators for semi-rigid connection were given and several typical types of connections were evaluated based on the indicators. Results show that the bending stiffness of connection has insignificant effect on the vibration modes and frequencies, the displacements and axial forces of transmission tower, but has significant effect on the bending moments and torsions. When the bending stiffness of connections increases to approaching the rigid connections, the bending stresses of main bars reach 10% to 25% of total stresses, which indicates that these parts of stresses have large influence on the strength and stability of bars. Quantitative indicators for semi-rigid connection were given. Some commonly-used connections with different bending stiffness were evaluated and results show that these connections all belong to semi-rigid connection. Therefore, it is highly recommended to consider the effect of semi-rigid connections in the finite element modeling process for transmission tower.

出版日期: 2017-06-11
CLC:  TU 312.1  
基金资助:

国家自然科学基金资助项目(51178425).

通讯作者: 沈国辉,副教授. ORCID: 0000-0002-3528-4117.     E-mail: ghshen@zju.edu.cn
作者简介: 钱程(1993—),男,硕士生,从事输电塔结构分析研究. ORCID: 0000-0003-2195-1027. E-mail: xsqc21@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.06.004.

QIAN Cheng, SHEN Guo-hui, GUO Yong, XING Yue-long. Influence of semi-rigid connections on wind-induced responses of transmission towers. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.06.004.

参考文献(References):
[1] SHEN G H, CAI C S, SUN B N, et al. Study of dynamic impacts on transmission-line systems attributable to conductor breakage using the finite element method [J]. ASCE, Journal of Performance of Constructed Facilities, 2011, 25(2): 130-137.
[2] LIU C C, XU Q S. Finite element model of high-voltage transmission tower cinfirmed [J]. Applied Mechanics and Materials, 2014, 459: 625-630.
[3] RAUL Z, DAN D. Stiffness of joints in bolt connected coldformed steel trusses [J]. Journal of Constructional Steel Research, 2006, 62(3): 240-249.
[4] 毛军朋.特高压输电塔半刚性K型节点受力性能分析[D].重庆:重庆大学,2012: 21-38.
MAO Jun-peng. Behaviors analysis of semi-rigid K-joints in UHV transmission tower [D]. Chongqing: Chongqing University, 2012: 21-38.
[5] SHI G, SHI Y J, WANG Y Q, et al. Finite elementanalysis and tests on bolted end-plate connections in steel portal frames [J]. Advances in Structural Engineering, 2004, 7(3): 45-56.
[6] 胡习兵.T型钢半刚性连接节点的性能研究[D].湖南:湖南大学,2004: 33-53.
HU Xi-bing. The research on the behavior of T-stub semi-rigid connections [D]. Hunan: Hunan University, 2004: 33-53.
[7] 刘超.基于ANSYS的半刚性连接特高压输电塔结构非线性分析[D].重庆:重庆大学,2015: 9-19.
LIU Chao. Nonlinear analysis of semi-rigid UHV transmission tower based on ANSYS [D]. Chongqing: Chongqing University, 2015: 9-19.
[8] 石永久,王萌,王元清,等.钢框架端板连接半刚性节点受力性能分析[J].工程力学,2011,28(9): 51-58.
SHI Yong-jiu, WANG Meng, WANG Yuan-qing, et al. Analysis on the behavior of steel frame end-plate conne-ctions [J]. Engineering Mechanics, 2011,28(9):51-58.
[9] IHADDOUDÈNE A N T, SAIDANI M, CHEMROUK M, et al. Mechanical model for the analysis of steel frames with semi rigid joints [J]. Journal of Constructional Steel Research, 2009, 65: 631-640.
[10] 王振宇,张劲帆,方成,等.半刚性节点初始刚度的组件式计算模型[J].浙江大学学报:工学版,2012,46(11): 1998-2006.
WANG Zhen-yu, ZHANG Jing-fan, FANG Cheng, et al. Study on the componentbased model of semi-rigid beam-to-column joints initial stiffness [J]. Journal of Zhejiang University: Engineering Science, 2012,46(11): 1998-2006.
[11] 焦安亮,李正良,刘红军,等.特高压输电塔半刚性连接K形节点受力性能研究[J].建筑结构学报,2014,35(7): 53-60.
JIAO An-liang, LI Zheng-liang, LIU Hong-jun, et al. Study on ultimate strength of semi-rigid K-type joints in UHV transmission tower [J]. Journal of Building Structures, 2014, 35(7): 53-60.
[12] 刘海峰,韩军科,李清华,等.考虑节点转动刚度的圆管杆件结构自适应有限元分析方法[J].工程力学,2013,30(10): 19-27.
LIU Hai-feng, HAN Jun-ke, LI Qing-hua, et al.Adaptive finite element procedure for circular bar structures considering rotating stiffness of joints [J]. Engineering Mechanics, 2013, 30(10): 19-27.
[13] 张艺达,朱楠,忻之巍,等.半刚性节点对单层球面网壳的影响[J].江苏建筑,2014,4: 36-40.
ZHANG Yi-da, ZHU Nan, XIN Zhi-wei, et al. Effect of semi-rigid joints on the single-layer spherical reticulated shell [J]. Jiangsu Construction, 2014, 4: 36-40.
[14] 刘才玮,张毅刚,吴金志.考虑螺栓球节点半刚性的网格结构有限元模型修正研究[J].振动与冲击,2014,33(6): 35-43.
LIU Cai-wei, ZHANG Yi-gang, WU Jin-zhi. Finite element model updating of single-layer latticed cylindrical shell in consideration of the semi-rigid characters of bolt-ball joint [J]. Journal of Vibration and Shock, 2014, 33(6): 35-43.
[15] ZHAO Z W, CHEN Z H, YAN X Y, et al. Simplified numerical method for latticed shells that considers member geometric imperfection and semi-rigid joints [J]. Advances in Structural Engineering, 2016, 19(4): 689-702.
[16] 安利强,朱登杰,武文玲,等.节点半刚性对特高压钢管塔静力特性的影响[J].应用力学学报,2015,32(6): 1019-1024.
AN Li-qiang, ZHU Deng-jie, WU Wen-ling, et al. Influence of joint semi-rigidity on the static characteristic for UHV transmission steel tubular tower [J]. Chinese Journal of Applied Mechanics, 2015.32(6): 1019-1024.
[17] European Committee for Standardization. Eurocode 3: Design of steel structures, part 1-8 Design of joints [S], Berlin: Ernst and Sohn, A wiley company, 1993.
[18] 中华人民共和国住房和城乡建设部.建筑结构荷载规范:GB 50009-2012[S].北京:中国建筑工业出版社,2012.
[19] 中华人民共和国国家经济贸易委员会.架空送电线路杆塔结构设计技术规定:DL/T 51542002[S]. 北京:中国电力出版社, 2002.
[20] 邱国志.圆钢管X型相贯节点刚度及其对结构整体性能的影响[D].上海:上海交通大学,2008: 15-34.
QIU Guo-zhi. Rigidity of unstiffened circular tubular X-joints and its effects on global performance of steel tubular structures [D]. Shanghai: Shanghai Jiao Tong University, 2008: 15-34.
[21] 吴兆旗,张素梅,姜绍飞.梁柱外伸端板连接弯矩—转角性能有限元分析[J].应用基础与工程科学学报,2010,18 (6): 922-932.
WU Zhao-qi, ZHANG Su-mei, JIANG Shao-fei. Finite element analysis of moment-rotation behavior of beam-to-column extended endplate connetions [J]. Journal of Basic Science and Engineering, 2010, 18 (6): 922-932.

[1] 汪之松,邓骏,方智远,陈圆圆. 下击暴流作用下低矮建筑风荷载大涡模拟[J]. 浙江大学学报(工学版), 2020, 54(3): 512-520.
[2] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[3] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[4] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[5] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[6] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[7] 章李刚,楼文娟,黄铭枫. 基于POD法控制模态选择的大跨屋盖
结构风致动力响应分析
[J]. J4, 2012, 46(9): 1599-1604.
[8] 沈国辉, 王宁博, 孙炳楠,楼文娟. 基于风洞试验的高层建筑风致响应和
等效风荷载计算
[J]. J4, 2012, 46(3): 448-453.
[9] 沈国辉, 余关鹏, 孙炳楠, 楼文娟, 李庆祥, 杨仕超. 大型冷却塔风致响应的干扰效应[J]. J4, 2012, 46(1): 33-38.
[10] 沈国辉,袁光辉,楼文娟,孙炳楠. 绝缘子在输电塔线体系动力计算中的作用分析[J]. J4, 2011, 45(11): 1960-1965.
[11] 沈国辉, 孙炳楠, 叶尹, 楼文娟. 高压输电塔的断线分析和断线张力计算[J]. J4, 2011, 45(4): 678-683.
[12] 袁行飞,吕晓东. 兆瓦级太阳能热气流发电站风荷载的数值模拟[J]. J4, 2011, 45(1): 99-105.