Please wait a minute...
浙江大学学报(工学版)
土木与交通工程     
循环遗传聚类法稳定图自动分析
苏亮, 宋明亮, 董石麟, 罗尧治
浙江大学 建筑工程学院,浙江 杭州 310058
Automatic analysis of stabilization diagram using iterative genetic-fuzzy clustering method
SU Liang, SONG Ming-liang, DONG Shi-lin, LUO Yao-zhi
College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2578 KB)   HTML
摘要:

提出一种迭代的基于遗传算法和模糊聚类(IG-FC)技术的稳定图自动分析方法.该算法通过任意给定一个初始聚类数目,迭代使用遗传算法和模糊聚类技术搜索出代表真实模态的聚类中心,最终自动剔除稳定图中的虚假模态.一旦程序参数给定后,可在没有任何人为主观干扰的情况下自动识别出结构的真实模态.使用一个七自由度的弹簧质量数值模型以及加拿大某座钢筋混凝土框架结构大楼、瑞士Z24桥的加速度实测数据验证所提出算法的准确性.算例模态频率的识别结果表明:该算法可以自动且较准确地剔除稳定图上的虚假模态;可以自动判别并识别出相邻模态以及弱激励模态.

Abstract:
An iterative genetic-fuzzy clustering (IG-FC) methodology was proposed to automatically interpret the stabilization diagram. With a randomly set initial clustering center number, the methodology attempted to search out the clustering centers that can represent the real modes by using genetic and fuzzy clustering algorithms iteratively. Finally, the spurious modes could be excluded automatically from the stabilization diagram. Once the parameters were set, the real modes of structure could thus be recognized without any human interaction. The proposed methodology was verified by a 7-degree of freedom (DOF) spring-mass model and the accelerometer data of a reinforced concrete frame structure in Canada and the Z24 bridge. The robust identification results of modal frequency prove that the proposed IG-FC methodology can automatically and accurately eliminate the spurious modes on the stabilization diagram. What’s more, the methodology can automatically distinguish and recognize the adjacent modes and weak incentive modes.
出版日期: 2017-03-01
CLC:  TU 311.3  
基金资助:

国家“十二五”科技支撑计划资助项目(2012BAJ07B03)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

苏亮, 宋明亮, 董石麟, 罗尧治. 循环遗传聚类法稳定图自动分析[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.03.012.

SU Liang, SONG Ming-liang, DONG Shi-lin, LUO Yao-zhi. Automatic analysis of stabilization diagram using iterative genetic-fuzzy clustering method. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.03.012.

[1] FARRAR C R, WORDEN K. An introduction to structural health monitoring [J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 303-315.
[2] 叶雨清,陈勇,孙炳楠,等.钱江四桥健康监测特征指标趋势分析[J].浙江大学学报:工学版,2009, 43(2):394-400.
YE Yu-qing, CHEN Yong, SUN Bing-nan, et al. Tendency analysis on health monitoring characteristic index of Qianjiang 4th Bridge [J]. Journal of ZhejiangUniversity: Engineering Science, 2009, 43(2): 394-400.
[3] SAS P. Modal Analysis Theory and Testing [M]. Katholieke Universteit Leuven, Departement Werktuigkunde,2001: 110-119.
[4] GUILLAUME P, VERBOVEN P, VANLANDUIT S, et al. A poly-reference implementation of the leastsquares complex frequency-domain estimator [C] ∥ Proceedings of IMAC 2003. Orlando: SEM, 2003: 183-192.
[5] YAN W J, REN W X. An enhanced power spectral density transmissibility (EPSDT) approach for operational modal analysis: theoretical and experimental investigation [J]. Engineering Structures, 2015, 102: 108-119.
[6] 孙鑫晖,张令弥.宽频带模态识别算法中极点的自动选取[J].地震工程与工程振动学报,2009,29(1): 130-134.
SUN Xin-hui, ZHANG Ling-mi. Automatic pole selection for broad band modal identification [J]. Journal of Earthquake Engineering and Engineering Vibration, 2009, 29(1): 130-134.
[7] 姜金辉,陈国平,张方,等.模糊聚类法在试验模态参数识别分析中的应用[J].南京航空航天大学学报,2009,41(3): 344-347.
JIANG Jin-hui, CHEN Guo-ping, ZHANG Fang, et al. Application of fuzzy clustering theory in experimental modal parameter identification analysis [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2009, 41(3): 344-347.
[8] 刘进明,应怀樵,章关永.OMA模态参数的优化及盲分析技术探讨[J].振动、测试与诊断,2012, 32(6): 1016-1020.
LIU Jin-ming, YING Huai-qiao, ZHANG Guan-yong. Optimization of OMA modal parameter and technology study of blind analysis [J]. Journal of Vibration Measurement & Diagnosis, 2012, 32(6): 1016-1020.
[9] REYNDERS E, HOUBRECHTS J, DE ROECK G. Fully automated (operational) modal analysis [J]. Mechanical Systems and Signal Processing, 2012, 29: 228-250.
[10] RAINIERI C, FABBROCINO G. Development and validation of an automated operational modal analysis algorithm for vibration-based monitoring and tensile load estimation [J]. Mechanical Systems and Signal Processing, 2015, 60/61: 512-534.
[11] 高新波.模糊聚类分析及其应用[M].西安:西安电子科技大学出版社,2004: 49-60.
[12] PAPPA R S, ELLIOTT K B, SCHENK A. Consistent-mode indicator for the eigensystem realization algorithm [J]. Journal of Guidance, Control, and Dynamics, 1993, 16(5): 852-858.
[13] SCIONTI M, LANSLOTS J P. Stabilisation diagrams: Pole identification using fuzzy clustering techniques [J]. Advances in Engineering Software, 2005, 36(11): 768-779.
[14] TANG K S, MAN K F, KWONG S, et al. Genetic algorithms and their applications [J]. IEEE signal processing magazine, 1996, 13(6): 22-37.
[15] 周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999: 32-58.
[16] 谢旭,李季隆,赵俊亮,等.基于遗传算法的车辆动力参数识别方法[J]. 浙江大学学报:工学版, 2010,44(9): 1818-1824.
XIE Xu, LI Ji-Long, ZHAO Jun-Liang, et al. Identification method of vehicle parameters based on genegtic algorithms [J]. Journal of Zhejiang University: Engineering Science, 2010, 44(9) : 1818-1824.
[17] 章国稳,汤宝平,孟利波.基于特征值分解的随机子空间算法研究[J].振动与冲击,2012,31(7): 74-78.
ZHANG Guo-wen, TANG Baoping, MENG Li-bo. Improved stochastic subspace identification algorithm based on eigendecomposition [J]. Journal of Vibration and Shock. 2012, 31(7): 74-78.
[18] BRINCKER R, VENTURA C. Introduction to operational modal analysis [M]. Chichester: John Wiley and Sons Ltd, 2015: 335-346.
[19] FELBER A J. Development of a hybrid evaluation system [D]. Vancouver: University of British Columbia,1993.
[20] MAECK J, DE ROECK G. Description of Z24 benchmark [J]. Mechanical Systems and Signal Processing, 2003, 17(1): 127-131.
[21] ROECK G D. The state-of-the-art of damage detection by vibration monitoring: the SIMCES experience [J]. Journal of Structural Control, 2003, 10(2): 127-134.
[22] 叶锡均.基于环境激励的大型土木工程结构模态参数识别研究[D].广州:华南理工大学,2012.
YE Xi-jun. Modal parameter identification of large-scale civil engineering structures based on ambient excitation [D]. Guangzhou: South China University of Technology, 2012.
[23] 王彤,张令弥.运行模态分析的频域空间域分解法及其应用[J].航空学报, 2006, 27(1): 62-66.
WANG Tong, ZHANG Lingmi.Frequency and spatial domain decom position for operational modal analysis and its application [J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(1): 62-66.
[24] REYNDERS E, DE ROECK G. Referencebased combined deterministic-stochastic subspace identification for experimental and operational modal analysis [J]. Mechanical Systems and Signal Processing, 2008, 22(3): 617-637.
[1] 殷平,王彤,谢旭. 考虑桥墩轴力变化影响的刚构桥近场地震反应[J]. J4, 2013, 47(11): 1896-1903.
[2] 苏亮,索靖. 等效线性化方法在基于位移抗震设计中的应用[J]. J4, 2013, 47(11): 1926-1931.
[3] 罗尧治, 丁慧. 波纹表面月牙形悬挑屋盖风荷载特性[J]. J4, 2013, 47(6): 1063-1071.
[4] 钟振宇, 楼文娟. 设置非等截面TLCD高层建筑在风荷载作用下减振分析[J]. J4, 2013, 47(6): 1081-1087.
[5] 徐海巍,余世策,楼文娟. 开孔结构内压传递方程的适用性分析[J]. J4, 2012, 46(5): 811-817.
[6] 徐彦, 关富玲, 川口健一. 充气薄膜结构的悬垂和充气展开过程[J]. J4, 2011, 45(1): 75-80.
[7] 肖南, 容里, 董石麟. 双层球面网壳振动主动控制作动器位置优化[J]. J4, 2010, 44(5): 942-949.
[8] 徐海巍,余世策,楼文娟. 开孔结构内压脉动影响因子的试验研究[J]. J4, 2014, 48(3): 487-491.